https://*.com/questions/41032551/how-to-compute-receiving-operating-characteristic-roc-and-auc-in-keras
https://github.com/keras-team/keras/issues/3230#issuecomment-319208366
http://www.luozhipeng.com/?p=1225
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
http://blog.csdn.net/zdy0_2004/article/details/44948511
keras 输出roc指标,不能每个batch输出一次,需要全部计算完再一次计算一次。使用sklearn中的metrics roc来计算。几个帖子类似
class roc_callback(keras.callbacks.Callback):
def __init__(self,training_data,validation_data):
self.x = training_data[0]
self.y = training_data[1]
self.x_val = validation_data[0]
self.y_val = validation_data[1]
def on_train_begin(self, logs={}):
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict(self.x)
roc = roc_auc_score(self.y, y_pred)
y_pred_val = self.model.predict(self.x_val)
roc_val = roc_auc_score(self.y_val, y_pred_val)
print('\rroc-auc: %s - roc-auc_val: %s' % (str(round(roc,4)),str(round(roc_val,4))),end=100*' '+'\n')
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
callbacks=[roc_callback(training_data=training_data,validation_data=validation_data)]
首先建立callbacks脚本,
my_callbacks.py如下:
import keras
from sklearn.metrics import roc_auc_score
import numpy as np
class Histories(keras.callbacks.Callback):
6
def on_train_begin(self, logs={}):
7
self.aucs = []
8
self.losses = []
9
10
def on_train_end(self, logs={}):
11
return
12
13
def on_epoch_begin(self, epoch, logs={}):
14
return
15
16
def on_epoch_end(self, epoch, logs={}):
17
self.losses.append(logs.get('loss'))
18
y_pred = self.model.predict(self.validation_data[0:2])
19
20
yp = []
21
for i in xrange(0, len(y_pred)):
22
yp.append(y_pred[i][0])
23
yt = []
24
for x in self.validation_data[2]:
25
yt.append(x[0])
26
27
auc = roc_auc_score(yt, yp)
28
self.aucs.append(auc)
29
print 'val-loss',logs.get('loss'), ' val-auc: ',auc,
30
print '\n'
31
32
return
33
34
def on_batch_begin(self, batch, logs={}):
35
return
36
37
def on_batch_end(self, batch, logs={}):
38
return
模型的输入为:
1 |
model = Model(inputs=[keyword1, keyword2], outputs=y) |
在每个epoch结束时计算auc并输出:
1 |
histories = my_callbacks.Histories() |
2 |
3 |
model.fit(train_x, train_y, batch_size=1024, epochs=20,shuffle=True, class_weight={1:1.0, 0:0.25}, validation_split=0.2, callbacks=[histories, model_check, lr]) |