要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。Output对应每组数据输出(A/B)%9973。Sample Input
2
1000 53
87 123456789
Sample Output
7922
6060 解析:
A = 9973 * y + n
A = x * B
所以 x * B - y * 9973 = n
带入exgcd时y的正负不影响 反正又不用y
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
} int main()
{
int T;
cin >> T;
while(T--)
{
LL n, a, b;
LL x, y, d;
cin >> n >> a;
b = ;
exgcd(a, b, d, x, y);
b /= d;
x *= n / d;
x = (x % b + b) % b;
cout << x << endl;
}
return ;
}