python 小猫检测,通过调用opencv自带的猫脸检测的分类器进行检测。
分类器有两个:haarcascade_frontalcatface.xml和
haarcascade_frontalcatface_extended.xml。可以在opencv的安装目录下找到
d:\program files\opencv320\opencv\sources\data\haarcascades
小猫检测代码为:
1. 直接读取图片调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import cv2
image = cv2.imread( "cat_04.png" )
gray = cv2.cvtcolor(image, cv2.color_bgr2gray)
# load the cat detector haar cascade, then detect cat faces
# in the input image
detector = cv2.cascadeclassifier( "haarcascade_frontalcatface.xml" )
#haarcascade_frontalcatface_extended.xml
rects = detector.detectmultiscale(gray, scalefactor = 1.1 ,
minneighbors = 10 , minsize = ( 100 , 100 ))
# loop over the cat faces and draw a rectangle surrounding each
print ( enumerate (rects))
for (i, (x, y, w, h)) in enumerate (rects):
cv2.rectangle(image, (x, y), (x + w, y + h), ( 0 , 0 , 255 ), 2 )
cv2.puttext(image, "cat #{}" . format (i + 1 ), (x, y - 10 ),
cv2.font_hershey_simplex, 0.55 , ( 0 , 0 , 255 ), 2 )
print (i, x,y,w,h)
# show the detected cat faces
cv2.imshow( "cat faces" , image)
cv2.waitkey( 1 )
|
检测效果:
2. 通过命令控制符调用
也可以通过调用argparse库,进行整体调用
新建cat_detect.py文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
# import the necessary packages
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.argumentparser()
ap.add_argument( "-i" , "--image" , required = true,
help = "path to the input image" )
ap.add_argument( "-c" , "--cascade" , default = "haarcascade_frontalcatface_extended.xml" ,
help = "path to cat detector haar cascade" )
args = vars (ap.parse_args())
#"haarcascade_frontalcatface_extended.xml",
# load the input image and convert it to grayscale
#image = cv2.imread(args["image"])
image = cv2.imread(args[ "image" ])
gray = cv2.cvtcolor(image, cv2.color_bgr2gray)
# load the cat detector haar cascade, then detect cat faces
# in the input image
detector = cv2.cascadeclassifier(args[ "cascade" ])
rects = detector.detectmultiscale(gray, scalefactor = 1.1 ,
minneighbors = 10 , minsize = ( 120 , 120 )) # cat good
# loop over the cat faces and draw a rectangle surrounding each
print ( enumerate (rects))
for (i, (x, y, w, h)) in enumerate (rects):
cv2.rectangle(image, (x, y), (x + w, y + h), ( 0 , 0 , 255 ), 2 )
cv2.puttext(image, "cat #{}" . format (i + 1 ), (x, y - 10 ),
cv2.font_hershey_simplex, 0.55 , ( 0 , 0 , 255 ), 2 )
# show the detected cat faces
cv2.imshow( "cat faces" , image)
cv2.waitkey( 0 )
|
通过“命令控制符”调用
1
2
3
|
cmd
cd e:\work\py\detectcat
e:\work\py\detectcat>python cat_detector.py - - image cat_07.png
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xiao_lxl/article/details/77191145