题意:在0~(n-1)中选择k个数,使得他们的和为n的倍数的选择方案有多少种。(n <= 1000, k <= 47)
解法:裸dp。d[i][j][k’]表示在前i个数中(0~i-1),选择k‘个数使得其和mod n的余数为j的选择方案的种数。时间、空间复杂度均为O(n^2*k),时间复杂度能接受,空间不能,用滚动数组优化即可。
tag:dp, 水题
// BEGIN CUT HERE
/*
* Author: plum rain
* score :
*/
/* */
// END CUT HERE
#line 11 "TheCowDivTwo.cpp"
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iomanip>
#include <numeric>
#include <fstream>
#include <cctype>
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <set>
#include <queue>
#include <bitset>
#include <list>
#include <string>
#include <utility>
#include <map>
#include <ctime>
#include <stack> using namespace std; #define CLR(x) memset(x, 0, sizeof(x))
#define PB push_back
#define SZ(v) ((int)(v).size())
#define zero(x) (((x)>0?(x):-(x))<eps)
#define out(x) cout<<#x<<":"<<(x)<<endl
#define tst(a) cout<<#a<<endl
#define CINBEQUICKER std::ios::sync_with_stdio(false) typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long int64; const double eps = 1e-;
const double PI = atan(1.0)*;
const int maxint = ;
const int mod = ; int d[][][]; class TheCowDivTwo
{
public:
int find(int n, int K){
CLR (d);
d[][][] = ;
int cur = ;
for (int i = ; i <= n; ++ i){
for (int j = ; j < n; ++ j){
int tmp = j-(i-)< ? n+j-(i-) : j-(i-);
for (int k = ; k <= K; ++ k){
d[cur][j][k] = d[cur^][j][k];
if (k){
d[cur][j][k] = (d[cur][j][k] + d[cur^][tmp][k-]) % mod;
}
}
}
cur ^= ;
} return d[cur^][][K];
} // BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -) || (Case == )) test_case_0(); if ((Case == -) || (Case == )) test_case_1(); if ((Case == -) || (Case == )) test_case_2(); if ((Case == -) || (Case == )) test_case_3(); if ((Case == -) || (Case == )) test_case_4(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, find(Arg0, Arg1)); }
void test_case_1() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, find(Arg0, Arg1)); }
void test_case_2() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, find(Arg0, Arg1)); }
void test_case_3() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, find(Arg0, Arg1)); }
void test_case_4() { int Arg0 = ; int Arg1 = ; int Arg2 = ; verify_case(, Arg2, find(Arg0, Arg1)); } // END CUT HERE }; // BEGIN CUT HERE
int main()
{
// freopen( "a.out" , "w" , stdout );
TheCowDivTwo ___test;
___test.run_test(-);
return ;
}
// END CUT HERE