题解:
当奇数
发现答案就是C(n,1)^2+C(n,3)^2+。。。C(n,n)^2
倒序相加,发现就是C(2n,n) 所以答案就是C(2n,n)/2
当偶数
好像并不会证
打表出来可以得到
2.当n为偶数且为4的倍数时,答案为C(2n,n)+C(n,n/2)/2
3.当n为偶数且不为4的倍数时,答案为C(2n,n)-C(n,n/2)/2
另外Claris告诉我在p较小时可以数位dp来求
先用lucas定理 C(n,m)=C(n%p,m%p)*C(n/p,m/p)
然后我们就可以把n表示成p进制
答案就是m在p进制下和对应n求C的乘积
然后我们可以数位dp这个东西
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rint register ll
#define IL inline
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const ll p=
;
const ll mo=
;
const ll INF=1e18;
const ll N=2e6;
ll n,cnt=,a[],jc1[N],jc2[N],f[N][][];
void gcd(ll x,ll y,ll &a,ll &b)
{
if (y==)
{
a=; b=; return;
}
gcd(y,x%y,b,a);
b-=a*(x/y);
}
ll C(ll x,ll y)
{
if (x<y) return();
return jc1[x]*jc2[y]%p*jc2[x-y]%p;
}
void jf(ll &x,ll y)
{
x+=y;
if (x>p) x-=p;
}
int main()
{
cin>>n;
while (n) a[++cnt]=n%p,n/=p;
jc1[]=jc2[]=;
rep(i,,p)
{
jc1[i]=(jc1[i-]*i)%p;
jc1[i]=(jc1[i]+p)%p;
ll x,y;
gcd(i,p,x,y);
jc2[i]=(jc2[i-]*x)%p;
jc2[i]=(jc2[i]+p)%p;
}
f[cnt+][][]=;
dep(j,cnt,)
{
ll tmp1j=,tmp1o=;
rep(i,,a[j]-)
{
ll kk=C(a[j],i);
kk=(kk*kk)%mo;
if (i%)
jf(tmp1j,kk);
else jf(tmp1o,kk);
}
f[j][][]=(f[j+][][]*tmp1o%mo+f[j+][][]*tmp1j%mo)%mo;
f[j][][]=(f[j+][][]*tmp1j%mo+f[j+][][]*tmp1o%mo)%mo;
if (a[j]%) jf(tmp1j,); else jf(tmp1o,);
f[j][][]+=(f[j+][][]*tmp1o%mo+f[j+][][]*tmp1j%mo)%mo;
f[j][][]+=(f[j+][][]*tmp1j%mo+f[j+][][]*tmp1o%mo)%mo;
if (f[j+][][]) f[j][(+a[j])%][]=;
else f[j][a[j]%][]=;
}
ll ans=(f[][][]+f[][][])%mo;
cout<<ans<<endl;
}