Description
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
Hint
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
题目的意思是求解从路标N到路标1的最短路径,简单的最短路径题目。
题目有一个坑:输入有重边,所以要选择最小的长度。
#include<string.h>
#include<stdio.h>
#include<math.h>
#define typec int
const int MAXN=1010;
const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
int pre[MAXN];
typec cost[MAXN][MAXN];
typec l[MAXN];
void D(int n,int beg)
{
for(int i=1;i<=n;i++)
{
l[i]=INF;vis[i]=false;pre[i]=-1;
}
l[beg]=0;
for(int j=1;j<=n;j++)
{
int k=-1;
int Min=INF;
for(int i=1;i<=n;i++)
if(!vis[i]&&l[i]<Min)
{
Min=l[i];
k=i;
}
if(k==-1)break;
vis[k]=true;
for(int i=1;i<=n;i++)
if(!vis[i]&&l[k]+cost[k][i]<l[i])
{
l[i]=l[k]+cost[k][i];
pre[i]=k;
}
}
} int main()
{
int n,i,j,t,a,b,c;
while(scanf("%d%d",&t,&n)!=EOF)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
cost[i][j]=(i==j)? 0:INF; for(i=0;i<t;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(cost[a][b]>c)
cost[a][b]=cost[b][a]=c;
}
D(n,n);
printf("%d\n",l[1]);
}
return 0;
}