最简单、直观的认识,将 yield 看做 return 对待,只是 return 返回一个值,而 yield 返回一个生成器。
要理解 yield 的作用,必须理解生成器是什么?
在理解生成器之前,必须先理解迭代器。
一、迭代器
逐项读取列表,称为迭代。
1
2
3
|
mylist = [ 1 , 2 , 3 ]
for i in mylist: # 可迭代对象
print (i)
|
列表解析式同样是一个迭代器。
1
2
3
4
5
6
7
8
|
mylist = [x * x for x in range ( 3 )]
for i in mylist:
print (i)
'''
0
1
4
'''
|
所有 for...in... 都是迭代器,包括列表、字符串、文件等等。
但是,迭代器所有的值都存储在内存中,十分浪费内存。
因此有了生成器的概念。
二、生成器
生成器是一种迭代器,这种迭代器只能迭代一次。
生成器不会一次性存储所有的值,而是会动态的生成值。
1
2
3
|
mygenerator = (x * x for x in range ( 3 ))
for i in mygenerator:
print (i)
|
生成器只可执行一次,再次执行时不会输出任何东西。
三、yield
1.例子一
yield 类似于 return 关键字,只是函数将返回一个生成器。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# 创建生成器
def createGenerator():
mylist = range ( 10 )
for i in mylist:
print (i) # 验证函数调用时并无执行
yield i * i
mygenerator = createGenerator()
print (mygenerator)
# <generator object createGenerator at 0x0000029E88FDCA50>
# 使用生成器
for i in mygenerator:
print (i)
# 再次执行 返回为空 没有值了
|
函数将返回一组只需要读取一次的值,可以大大的提升代码性能。
在调用函数时,函数体中的代码并不会执行,函数只返回生成器对象。
代码每次从使用生成器时停止的地方继续。
2.例子二
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
#Python学习交流群:531509025
# 学习另外一个例子
def foo():
print ( "starting..." )
while True :
res = yield 4 # 函数并不真正执行
print ( "res:" , res)
g = foo() # 得到一个生成器对象
print ( next (g)) # 真正执行
print ( "*" * 20 )
print ( next (g)) # 从上一次停止的地方继续执行
'''
starting...
4
********************
res: None
4
'''
print (g.send( 7 ))
|
执行 yield 之后,才会跳出 while 循环。
next 函数用于执行下一步操作。
send 函数用于发送一个参数给生成器。且 send 方法中包含 next 方法。
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注服务器之家的更多内容!
原文链接:https://www.cnblogs.com/xxpythonxx/p/15463109.html