jedis使用管道(pipeline)对redis进行读写(使用hmset、hgetall测试)

时间:2023-12-27 14:34:31

一般情况下,Redis Client端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client。这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端。在Redis中,有没有类似HBase Scanner Caching的东西呢,一次请求,返回多条记录呢?有,这就是Pipline。官方介绍 http://redis.io/topics/pipelining。

通过pipeline方式当有大批量的操作时候,我们可以节省很多原来浪费在网络延迟的时间,需要注意到是用pipeline方式打包命令发送,redis必须在处理完所有命令前先缓存起所有命令的处理结果。打包的命令越多,缓存消耗内存也越多。所以并不是打包的命令越多越好。

使用Pipeline在对Redis批量读写的时候,性能上有非常大的提升。
使用Java测试了一下:

import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.Response; public class Test {
public static void main(String[] args) throws Exception {
Jedis redis = new Jedis("127.0.0.1", 6379, 400000);
Map<String, String> data = new HashMap<String, String>();
redis.select(8);
redis.flushDB();
// hmset
long start = System.currentTimeMillis();
// 直接hmset
for (int i = 0; i < 10000; i++) {
data.clear();
data.put("k_" + i, "v_" + i);
redis.hmset("key_" + i, data);
}
long end = System.currentTimeMillis();
System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
System.out.println("hmset without pipeline used [" + (end-start)/1000 + "] seconds ..");
redis.select(8);
redis.flushDB();
// 使用pipeline hmset
Pipeline p = redis.pipelined();
start = System.currentTimeMillis();
for (int i = 0; i < 10000; i++) {
data.clear();
data.put("k_" + i, "v_" + i);
p.hmset("key_" + i, data);
}
p.sync();
end = System.currentTimeMillis();
System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
System.out.println("hmset with pipeline used [" + (end-start)/1000 + "] seconds ..");
// hmget
Set keys = redis.keys("*");
// 直接使用Jedis hgetall
start = System.currentTimeMillis();
Map<String, Map<String, String>> result = new HashMap<String, Map<String, String>>();
for (String key : keys) {
result.put(key, redis.hgetAll(key));
}
end = System.currentTimeMillis();
System.out.println("result size:[" + result.size() + "] ..");
System.out.println("hgetAll without pipeline used [" + (end-start)/1000 + "] seconds ..");
// 使用pipeline hgetall
Map<String, Response<Map<String, String>>> responses =
new HashMap<String, Response<Map<String, String>>>(
keys.size());
result.clear();
start = System.currentTimeMillis();
for (String key : keys) {
responses.put(key, p.hgetAll(key));
}
p.sync();
for (String k : responses.keySet()) {
result.put(k, responses.get(k).get());
}
end = System.currentTimeMillis();
System.out.println("result size:[" + result.size() + "] ..");
System.out.println("hgetAll with pipeline used [" + (end-start)/1000 + "] seconds ..");
redis.disconnect();
}
}

  

//测试结果:
//使用pipeline来批量读写10000条记录,就是小菜一碟,秒完。
dbsize:[10000] ..
hmset without pipeline used [243] seconds ..
dbsize:[10000] ..
hmset with pipeline used [0] seconds ..
result size:[10000] ..
hgetAll without pipeline used [243] seconds ..
result size:[10000] ..
hgetAll with pipeline used [0] seconds ..

//测试结果2 (外网)

dbsize:[10000] ..
hmset without pipeline used [653] seconds ..
dbsize:[10000] ..
hmset with pipeline used [1] seconds ..

result size:[10000] ..
hgetAll without pipeline used [680] seconds ..
result size:[10000] ..
hgetAll with pipeline used [1] seconds ..