一、Flume监听端口
1,在linux机器上下载telnet工具
yum search telnet
yumm install telnet.x86_64
2.编写flume的配置文件,并将文件复制到flume/conf文件夹下
#.agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 #.source netcat表示监视端口、localhost监视本机(也可以写本机名如hd1-)
#44444端口号(随便写,注意不要与常用的端口号重复即可)
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = #.sinks Describe the sink 输出日志文件
a1.sinks.k1.type = logger #. 使用内存、总容量1000、每次传输100
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = #.Bind the source and sink to the channel 一个source可以绑定多个channel
# 一个sinks可以只能绑定一个channel 使用的是图二的模型
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
3.启动配置文件
bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_telnet.conf -Dflume.root.logger==INFO,console
4.新建一个Linux本机,输入下面命令连接本机
telnet localhost 44444
5.发送数据查看
二、实施采集数据到hdfs(监控文件)
这里有一个无限产生数据的jar包,其产生的数据存放在/opt/jars/calllog.csv下
1.写配置文件 flumejob_hdfs.conf
# .agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # .sources
# exec 执行一个命令的方式去查看文件 tail -F 实时查看
a1.sources.r1.type = exec
# 要执行的脚本command tail -F 默认10行 man tail 查看帮助
a1.sources.r1.command = tail -F /opt/jars/calllog.csv
# 执行这个command使用的是哪个脚本 -c 指定使用什么命令
# bash: /usr/bin/bash /usr/share/man/man1/bash..gz
a1.sources.r1.shell = /usr/bin/bash -c # .sinks
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hd1-1:9000/flume/calllog
#上传文件的前缀
a1.sinks.k1.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a1.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹 秒 (默认30s)
a1.sinks.k1.hdfs.roundValue =
#重新定义时间单位(每小时滚动一个文件夹)
a1.sinks.k1.hdfs.roundUnit = minute
#是否使用本地时间戳
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a1.sinks.k1.hdfs.batchSize =
#设置文件类型,可支持压缩
a1.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件 秒
a1.sinks.k1.hdfs.rollInterval =
#设置每个文件的滚动大小 字节(最好128M)
a1.sinks.k1.hdfs.rollSize =
#文件的滚动与 Event 数量无关
a1.sinks.k1.hdfs.rollCount =
#最小冗余数(备份数 生成滚动功能则生效roll hadoop本身有此功能 无需配置) 1份 不冗余
a1.sinks.k1.hdfs.minBlockReplicas = # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2.启动hdfs、yarn,并在hdfs上建立文件中的生成文件目录
hdfs dfs -mkdir -p /flume/calllog
3.启动命令
bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flumejob_hdfs.conf
4.启动jar包,然后查看hdfs上calllog文件夹下的变化
三、监控文件目录
1.写配置文件 flumejob_dir.conf
# .agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1 # .sources
a1.sources.r1.type = spooldir
# 监控的文件夹
a1.sources.r1.spoolDir = /root/spooldir
# 上传成功后显示后缀名
a1.sources.r1.fileSuffix = .COMPLETED
# 如论如何 加绝对路径的文件名 默认false
a1.sources.r1.fileHeader = true #忽略所有以.tmp 结尾的文件(正在被写入),不上传
# ^以任何开头 出现无限次 以.tmp结尾的
a1.sources.r1.ignorePattern = ([^ ]*\.tmp) # .sinks
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hd09-01:9000/flume/spooldir/%Y%m%d/%H
#上传文件的前缀
a1.sinks.k1.hdfs.filePrefix = spooldir-
#是否按照时间滚动文件夹
a1.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a1.sinks.k1.hdfs.roundValue =
#重新定义时间单位
a1.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a1.sinks.k1.hdfs.batchSize = #设置文件类型,可支持压缩
a1.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a1.sinks.k1.hdfs.rollInterval =
#设置每个文件的滚动大小大概是 128M
a1.sinks.k1.hdfs.rollSize =
#文件的滚动与 Event 数量无关
a1.sinks.k1.hdfs.rollCount =
#最小副本数
a1.sinks.k1.hdfs.minBlockReplicas = # .channels
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # .bink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2.启动hdfs、yarn,注意,不需要在hdfs上创建
3.启动命令
bin/flume-ng agent --conf conf\ --name a1 --conf-file conf/flumejob_dir.conf
4.将任意文件复制到spool文件目录中,在hdfs中可看到生成日志文件
四、Flume监听一个文件,然后使用两个channel,一个channle对应的sink存储到hdfs,另一个channel对应的sink存储到本地。
思路:这时应需要三个agent,
第一个agent用来监听文件并将数据源复制为两份发送到其他两个agent,
第二个agent将数据传输到hdfs存储,第三个agent将数据存储在本地。
1.编写三个conf文件(flumejob1.conf、flumejob2.conf、flumejob3.conf)
# name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给多个 channel
a1.sources.r1.selector.type = replicating # Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /tmp/root/hive.log
a1.sources.r1.shell = /bin/bash -c # Describe the sink
# 分两个端口发送数据
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hd09-
a1.sinks.k1.port = a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hd09-
a1.sinks.k2.port = # Describe the channel
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = a1.channels.c2.type = memory
a1.channels.c2.capacity =
a1.channels.c2.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1 # Describe/configure the source
a2.sources.r1.type = avro
# 端口抓取数据
a2.sources.r1.bind = hd09-
a2.sources.r1.port = # Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://hd09-01:9000/flume2/%Y%m%d/%H #上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
#是否按照时间滚动文件夹
a2.sinks.k1.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k1.hdfs.roundValue =
#重新定义时间单位
a2.sinks.k1.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k1.hdfs.batchSize = #设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k1.hdfs.rollInterval =
#设置每个文件的滚动大小大概是 128M
a2.sinks.k1.hdfs.rollSize =
#文件的滚动与 Event 数量无关
a2.sinks.k1.hdfs.rollCount =
#最小副本数 # Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity =
a2.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c1 # Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = hd09-
a3.sources.r1.port = # Describe the sink
a3.sinks.k1.type = file_roll
a3.sinks.k1.sink.directory = /root/flume2 # Describe the channel
a3.channels.c1.type = memory
a3.channels.c1.capacity =
a3.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1
2.在本地创建文件中本地存放的文件夹,本地不会自动创建,而hdfs会
mkdir /root/flume2
3.打开jar包测试。