CUDA 编程的基本模式

时间:2023-12-26 14:48:49

reproduced from: http://www.cnblogs.com/muchen/p/6306747.html

前言

本文将介绍 CUDA 编程的基本模式,所有 CUDA 程序都基于此模式编写,即使是调用库,库的底层也是这个模式实现的。

模式描述

  1. 定义需要在 device 端执行的核函数。( 函数声明前加 _golbal_ 关键字 )

2. 在显存中为待运算的数据以及需要存放结果的变量开辟显存空间。( cudaMalloc 函数实现 )

3. 将待运算的数据传输进显存。( cudaMemcpy,cublasSetVector 等函数实现 )

4. 调用 device 端函数,同时要将需要为 device 端函数创建的块数线程数等参数传递进 <<<>>>。( 注: <<<>>>下方编译器可能显示语法错误,不用管 )

5. 从显存中获取结果变量。( cudaMemcpy,cublasGetVector 等函数实现 )

6. 释放申请的显存空间。( cudaFree 实现 )

PS:每个 device 端函数在被调用时都能获取到调用它的具体块号,线程号,从而实现并行( 获取方法请参考下面的编程规范说明以及代码示例 )。

编程规范说明

在 CUDA 标准编程模式中,增加了一些编程规范,在这里简要说明:

  函数声明关键字:

    1. __device__

    表明此函数只能在 GPU 中被调用,在 GPU 中执行。这类函数只能被 __global__ 类型函数或 __device__ 类型函数调用。

    2. __global__

    表明此函数在 CPU 上调用,在 GPU 中执行。这也是以后会常提到的 "内核函数",有时为了便于理解也称 "device" 端函数。

    3. __host__

    表明此函数在 CPU 上调用和执行,这也是默认情况。
  内核函数配置运算符 <<<>>> - 这个运算符在调用内核函数的时候使用,一般情况下传递进三个参数:

    1. 块数

    2. 线程数

    3. 共享内存大小 (此参数默认为0 )

  内核函数中的几个系统变量 - 这几个变量可以在内核函数中使用,从而控制块与线程的工作:

    1. gridDim:块数

    2. blockDim:块中线程数

    3. blockIdx:块编号 (0 - gridDim-1)

    4. threadIdx:线程编号 (0 - blockDim-1)

  知道这些已经足够编写 CUDA 程序了,更多的编程说明将在以后的文章中介绍。

代码示例

该程序采用 CUDA 并行化思想来对数组进行求和:

 // 相关 CUDA 库
#include "cuda_runtime.h"
#include "cuda.h"
#include "device_launch_parameters.h" #include <iostream>
#include <cstdlib> using namespace std; const int N = ; // 块数
const int BLOCK_data = ;
// 各块中的线程数
const int THREAD_data = ; // CUDA初始化函数
bool InitCUDA()
{
int deviceCount; // 获取显示设备数
cudaGetDeviceCount (&deviceCount); if (deviceCount == )
{
cout << "找不到设备" << endl;
return EXIT_FAILURE;
} int i;
for (i=; i<deviceCount; i++)
{
cudaDeviceProp prop;
if (cudaGetDeviceProperties(&prop,i)==cudaSuccess) // 获取设备属性
{
if (prop.major>=) //cuda计算能力
{
break;
}
}
} if (i==deviceCount)
{
cout << "找不到支持 CUDA 计算的设备" << endl;
return EXIT_FAILURE;
} cudaSetDevice(i); // 选定使用的显示设备 return EXIT_SUCCESS;
} // 此函数在主机端调用,设备端执行。
__global__
static void Sum (int *data,int *result)
{
// 取得线程号
const int tid = threadIdx.x;
// 获得块号
const int bid = blockIdx.x; int sum = ; // 有点像网格计算的思路
for (int i=bid*THREAD_data+tid; i<N; i+=BLOCK_data*THREAD_data)
{
sum += data[i];
} // result 数组存放各个线程的计算结果
result[bid*THREAD_data+tid] = sum;
} int main ()
{
// 初始化 CUDA 编译环境
if (InitCUDA()) {
return EXIT_FAILURE;
}
cout << "成功建立 CUDA 计算环境" << endl << endl; // 建立,初始化,打印测试数组
int *data = new int [N];
cout << "测试矩阵: " << endl;
for (int i=; i<N; i++)
{
data[i] = rand()%;
cout << data[i] << " ";
if ((i+)% == ) cout << endl;
}
cout << endl; int *gpudata, *result; // 在显存中为计算对象开辟空间
cudaMalloc ((void**)&gpudata, sizeof(int)*N);
// 在显存中为结果对象开辟空间
cudaMalloc ((void**)&result, sizeof(int)*BLOCK_data*THREAD_data); // 将数组数据传输进显存
cudaMemcpy (gpudata, data, sizeof(int)*N, cudaMemcpyHostToDevice);
// 调用 kernel 函数 - 此函数可以根据显存地址以及自身的块号,线程号处理数据。
Sum<<<BLOCK_data,THREAD_data,>>> (gpudata,result); // 在内存中为计算对象开辟空间
int *sumArray = new int[THREAD_data*BLOCK_data];
// 从显存获取处理的结果
cudaMemcpy (sumArray, result, sizeof(int)*THREAD_data*BLOCK_data, cudaMemcpyDeviceToHost); // 释放显存
cudaFree (gpudata);
cudaFree (result); // 计算 GPU 每个线程计算出来和的总和
int final_sum=;
for (int i=; i<THREAD_data*BLOCK_data; i++)
{
final_sum += sumArray[i];
} cout << "GPU 求和结果为: " << final_sum << endl; // 使用 CPU 对矩阵进行求和并将结果对照
final_sum = ;
for (int i=; i<N; i++)
{
final_sum += data[i];
}
cout << "CPU 求和结果为: " << final_sum << endl; getchar(); return ;
}

小结

  1. 掌握本节知识的关键除了要掌握各个API,还要深刻理解内核函数中的块及线程变量的控制,或者说施展 :)

2. 一定要明确传递进 API 的是参数本身,还是参数的地址,这很关键。