本文实例为大家分享了python实现烟花小程序的具体代码,供大家参考,具体内容如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
'''
FIREWORKS SIMULATION WITH TKINTER
* self - containing code
* to run: simply type python simple.py in your console
* compatible with both Python 2 and Python 3
* Dependencies: tkinter, Pillow (only for background image)
* The design is based on high school physics, with some small twists only for aesthetics purpose
import tkinter as tk
#from tkinter import messagebox
#from tkinter import PhotoImage
from PIL import Image, ImageTk
from time import time, sleep
from random import choice, uniform, randint
from math import sin, cos, radians
# gravity, act as our constant g, you can experiment by changing it
GRAVITY = 0.05
# list of color, can choose randomly or use as a queue (FIFO)
colors = [ 'red' , 'blue' , 'yellow' , 'white' , 'green' , 'orange' , 'purple' , 'seagreen' , 'indigo' , 'cornflowerblue' ]
Generic class for particles
particles are emitted almost randomly on the sky, forming a round of circle (a star) before falling and getting removed
from canvas
Attributes:
- id : identifier of a particular particle in a star
- x, y: x,y - coordinate of a star (point of explosion)
- vx, vy: speed of particle in x, y coordinate
- total: total number of particle in a star
- age: how long has the particle last on canvas
- color: self - explantory
- cv: canvas
- lifespan: how long a particle will last on canvas
class part:
def __init__( self , cv, idx, total, explosion_speed, x = 0. , y = 0. , vx = 0. , vy = 0. , size = 2. , color = 'red' , lifespan = 2 , * * kwargs):
self . id = idx
self .x = x
self .y = y
self .initial_speed = explosion_speed
self .vx = vx
self .vy = vy
self .total = total
self .age = 0
self .color = color
self .cv = cv
self .cid = self .cv.create_oval(
x - size, y - size, x + size,
y + size, fill = self .color)
self .lifespan = lifespan
def update( self , dt):
self .age + = dt
# particle expansions
if self .alive() and self .expand():
move_x = cos(radians( self . id * 360 / self .total)) * self .initial_speed
move_y = sin(radians( self . id * 360 / self .total)) * self .initial_speed
self .cv.move( self .cid, move_x, move_y)
self .vx = move_x / ( float (dt) * 1000 )
# falling down in projectile motion
elif self .alive():
move_x = cos(radians( self . id * 360 / self .total))
# we technically don't need to update x, y because move will do the job
self .cv.move( self .cid, self .vx + move_x, self .vy + GRAVITY * dt)
self .vy + = GRAVITY * dt
# remove article if it is over the lifespan
elif self .cid is not None :
cv.delete( self .cid)
self .cid = None
# define time frame for expansion
def expand ( self ):
return self .age < = 1.2
# check if particle is still alive in lifespan
def alive( self ):
return self .age < = self .lifespan
Firework simulation loop:
Recursively call to repeatedly emit new fireworks on canvas
a list of list ( list of stars, each of which is a list of particles)
is created and drawn on canvas at every call,
via update protocol inside each 'part' object
def simulate(cv):
t = time()
explode_points = []
wait_time = randint( 10 , 100 )
numb_explode = randint( 6 , 10 )
# create list of list of all particles in all simultaneous explosion
for point in range (numb_explode):
objects = []
x_cordi = randint( 50 , 550 )
y_cordi = randint( 50 , 150 )
speed = uniform ( 0.5 , 1.5 )
size = uniform ( 0.5 , 3 )
color = choice(colors)
explosion_speed = uniform( 0.2 , 1 )
total_particles = randint( 10 , 50 )
for i in range ( 1 ,total_particles):
r = part(cv, idx = i, total = total_particles, explosion_speed = explosion_speed, x = x_cordi, y = y_cordi,
vx = speed, vy = speed, color = color, size = size, lifespan = uniform( 0.6 , 1.75 ))
objects.append(r)
explode_points.append(objects)
total_time = . 0
# keeps undate within a timeframe of 1.8 second
while total_time < 1.8 :
sleep( 0.01 )
tnew = time()
t, dt = tnew, tnew - t
for point in explode_points:
for item in point:
item.update(dt)
cv.update()
total_time + = dt
# recursive call to continue adding new explosion on canvas
root.after(wait_time, simulate, cv)
def close( * ignore):
"""Stops simulation loop and closes the window."""
global root
root.quit()
if __name__ = = '__main__' :
root = tk.Tk()
cv = tk.Canvas(root, height = 600 , width = 600 )
# use a nice background image
image = Image. open ( "./image1.jpg" ) #背景照片路径自行选择,可以选择酷炫一点的,看起来效果会#更好
photo = ImageTk.PhotoImage(image)
cv.create_image( 0 , 0 , image = photo, anchor = 'nw' )
cv.pack()
root.protocol( "WM_DELETE_WINDOW" , close)
root.after( 100 , simulate, cv)
root.mainloop()
|
注意:这里需要安装tkinter,安装过程:
step1:
>>> import _tkinter # with underscore, and lowercase 't'
step2:
>>> import Tkinter # no underscore, uppercase 'T' for versions prior to V3.0
>>> import tkinter # no underscore, lowercase 't' for V3.0 and later
step3:
>>> Tkinter._test() # note underscore in _test and uppercase 'T' for versions prior to V3.0
>>> tkinter._test() # note underscore in _test and lowercase 'T' for V3.0 and later
然后就可以运行了,在代码中有一个背景照片部分,路径可自行选择!我这里就不修改了。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/Dachao0707/article/details/82955710