利用redis + lua解决抢红包高并发的问题

时间:2022-11-28 12:19:55

抢红包的需求分析

抢红包的场景有点像秒杀,但是要比秒杀简单点。
因为秒杀通常要和库存相关。而抢红包则可以允许有些红包没有被抢到,因为发红包的人不会有损失,没抢完的钱再退回给发红包的人即可。
另外像小米这样的抢购也要比淘宝的要简单,也是因为像小米这样是一个公司的,如果有少量没有抢到,则下次再抢,人工修复下数据是很简单的事。而像淘宝这么多商品,要是每一个都存在着修复数据的风险,那如果出故障了则很麻烦。

淘宝的专家丁奇有个文章有写到淘宝是如何应对秒杀的:《秒杀场景下MySQL的低效–原因和改进》

http://blog.nosqlfan.com/html/4209.html

基于redis的抢红包方案

下面介绍一种基于redis的抢红包方案。

把原始的红包称为大红包,拆分后的红包称为小红包。

1.小红包预先生成,插到数据库里,红包对应的用户ID是null。生成算法见另一篇blog:http://blog.csdn.net/hengyunabc/article/details/19177877

2.每个大红包对应两个redis队列,一个是未消费红包队列,另一个是已消费红包队列。开始时,把未抢的小红包全放到未消费红包队列里。

未消费红包队列里是json字符串,如{userId:'789', money:'300'}。

3.在redis中用一个map来过滤已抢到红包的用户。

4.抢红包时,先判断用户是否抢过红包,如果没有,则从未消费红包队列中取出一个小红包,再push到另一个已消费队列中,最后把用户ID放入去重的map中。

5.用一个单线程批量把已消费队列里的红包取出来,再批量update红包的用户ID到数据库里。

上面的流程是很清楚的,但是在第4步时,如果是用户快速点了两次,或者开了两个浏览器来抢红包,会不会有可能用户抢到了两个红包?

为了解决这个问题,采用了lua脚本方式,让第4步整个过程是原子性地执行。

下面是在redis上执行的Lua脚本:

  1. -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
  2. -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
  3. -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
  4. -- 如果用户已抢过红包,则返回nil
  5. if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then
  6. return nil
  7. else
  8. -- 先取出一个小红包
  9. local hongBao = redis.call('rpop', KEYS[1]);
  10. if hongBao then
  11. local x = cjson.decode(hongBao);
  12. -- 加入用户ID信息
  13. x['userId'] = KEYS[4];
  14. local re = cjson.encode(x);
  15. -- 把用户ID放到去重的set里
  16. redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);
  17. -- 把红包放到已消费队列里
  18. redis.call('lpush', KEYS[2], re);
  19. return re;
  20. end
  21. end
  22. return nil

下面是测试代码:

  1. public class TestEval {
  2. static String host = "localhost";
  3. static int honBaoCount = 1_0_0000;
  4. static int threadCount = 20;
  5. static String hongBaoList = "hongBaoList";
  6. static String hongBaoConsumedList = "hongBaoConsumedList";
  7. static String hongBaoConsumedMap = "hongBaoConsumedMap";
  8. static Random random = new Random();
  9. //  -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
  10. //  -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
  11. //  -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
  12. static String tryGetHongBaoScript =
  13. //          "local bConsumed = redis.call('hexists', KEYS[3], KEYS[4]);\n"
  14. //          + "print('bConsumed:' ,bConsumed);\n"
  15. "if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then\n"
  16. + "return nil\n"
  17. + "else\n"
  18. + "local hongBao = redis.call('rpop', KEYS[1]);\n"
  19. //          + "print('hongBao:', hongBao);\n"
  20. + "if hongBao then\n"
  21. + "local x = cjson.decode(hongBao);\n"
  22. + "x['userId'] = KEYS[4];\n"
  23. + "local re = cjson.encode(x);\n"
  24. + "redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);\n"
  25. + "redis.call('lpush', KEYS[2], re);\n"
  26. + "return re;\n"
  27. + "end\n"
  28. + "end\n"
  29. + "return nil";
  30. static StopWatch watch = new StopWatch();
  31. public static void main(String[] args) throws InterruptedException {
  32. //      testEval();
  33. generateTestData();
  34. testTryGetHongBao();
  35. }
  36. static public void generateTestData() throws InterruptedException {
  37. Jedis jedis = new Jedis(host);
  38. jedis.flushAll();
  39. final CountDownLatch latch = new CountDownLatch(threadCount);
  40. for(int i = 0; i < threadCount; ++i) {
  41. final int temp = i;
  42. Thread thread = new Thread() {
  43. public void run() {
  44. Jedis jedis = new Jedis(host);
  45. int per = honBaoCount/threadCount;
  46. JSONObject object = new JSONObject();
  47. for(int j = temp * per; j < (temp+1) * per; j++) {
  48. object.put("id", j);
  49. object.put("money", j);
  50. jedis.lpush(hongBaoList, object.toJSONString());
  51. }
  52. latch.countDown();
  53. }
  54. };
  55. thread.start();
  56. }
  57. latch.await();
  58. }
  59. static public void testTryGetHongBao() throws InterruptedException {
  60. final CountDownLatch latch = new CountDownLatch(threadCount);
  61. System.err.println("start:" + System.currentTimeMillis()/1000);
  62. watch.start();
  63. for(int i = 0; i < threadCount; ++i) {
  64. final int temp = i;
  65. Thread thread = new Thread() {
  66. public void run() {
  67. Jedis jedis = new Jedis(host);
  68. String sha = jedis.scriptLoad(tryGetHongBaoScript);
  69. int j = honBaoCount/threadCount * temp;
  70. while(true) {
  71. Object object = jedis.eval(tryGetHongBaoScript, 4, hongBaoList, hongBaoConsumedList, hongBaoConsumedMap, "" + j);
  72. j++;
  73. if (object != null) {
  74. //                          System.out.println("get hongBao:" + object);
  75. }else {
  76. //已经取完了
  77. if(jedis.llen(hongBaoList) == 0)
  78. break;
  79. }
  80. }
  81. latch.countDown();
  82. }
  83. };
  84. thread.start();
  85. }
  86. latch.await();
  87. watch.stop();
  88. System.err.println("time:" + watch.getTotalTimeSeconds());
  89. System.err.println("speed:" + honBaoCount/watch.getTotalTimeSeconds());
  90. System.err.println("end:" + System.currentTimeMillis()/1000);
  91. }
  92. }

测试结果20个线程,每秒可以抢2.5万个,足以应付绝大部分的抢红包场景。

如果是真的应付不了,拆分到几个redis集群里,或者改为批量抢红包,也足够应付。

总结:

redis的抢红包方案,虽然在极端情况下(即redis挂掉)会丢失一秒的数据,但是却是一个扩展性很强,足以应付高并发的抢红包方案。

利用redis + lua解决抢红包高并发的问题的更多相关文章

  1. Redis:解决分布式高并发修改同一个Key的问题

    本篇文章是通过watch(监控)+mutil(事务)实现应用于在分布式高并发处理等相关场景.下边先通过redis-cli.exe来测试多个线程修改时,遇到问题及解决问题. 高并发下修改同一个key遇到 ...

  2. Redis&plus;Lua解决高并发场景抢购秒杀问题

    之前写了一篇PHP+Redis链表解决高并发下商品超卖问题,今天介绍一些如何使用PHP+Redis+Lua解决高并发下商品超卖问题. 为何要使用Lua脚本解决商品超卖的问题呢? Redis在2.6版本 ...

  3. redis&plus;php&plus;mysql处理高并发实例

    一.实验环境ubuntu.php.apache或nginx.mysql二.利用Redis锁解决高并发问题,需求现在有一个接口可能会出现并发量比较大的情况,这个接口使用php写的,做的功能是接收 用户的 ...

  4. 利用Redis锁解决高并发问题

    这里我们主要利用Redis的setnx的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当前键存在 ...

  5. 利用 Redis 锁解决高并发问题

    这里我们主要利用 Redis 的 setnx 的命令来处理高并发. setnx 有两个参数.第一个参数表示键.第二个参数表示值.如果当前键不存在,那么会插入当前键,将第二个参数做为值.返回 1.如果当 ...

  6. Redis结合Lua脚本实现高并发原子性操作

    从 2.6版本 起, Redis 开始支持 Lua 脚本 让开发者自己扩展 Redis … 案例-实现访问频率限制: 实现访问者 $ip 在一定的时间 $time 内只能访问 $limit 次. 非脚 ...

  7. Netty Redis 亿级流量 高并发 实战 (长文 修正版)

    目录 疯狂创客圈 Java 分布式聊天室[ 亿级流量]实战系列之 -30[ 博客园 总入口 ] 写在前面 1.1. 快速的能力提升,巨大的应用价值 1.1.1. 飞速提升能力,并且满足实际开发要求 1 ...

  8. 怎么保证redis集群的高并发和高可用的&quest;

    redis不支持高并发的瓶颈在哪里? 单机.单机版的redis支持上万到几万的QPS不等. 主要根据你的业务操作的复杂性,redis提供了很多复杂的操作,lua脚本. 2.如果redis要支撑超过10 ...

  9. 如何解决java高并发详细讲解

    对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了.而并发问题是绝大部分的程序员头疼的问题, 但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研 ...

随机推荐

  1. 如何在Ubuntu下的VirtualBox虚拟机(Windows XP)里挂载&sol;使用U盘 (转载)

    文章来源:http://www.codelast.com/ 在Ubuntu下安装了VirtualBox之后,如果你的虚拟机安装的是Windows XP系统,那么,你会发现,当你插上U盘时,无论你怎么折 ...

  2. 用css来写一些简单的图形

    在写网页的过程中,有时我们需要用到一些简单的图片但是手头又没有合适的,我们其实可以自己来写,下面我就简单的介绍几个例子: 1.上三角 Triangle Up #triangle-up { width: ...

  3. windows 10启动盘制作工具

    Rufus 官方网站:http://rufus.akeo.ie/

  4. 去掉字符串中的空格 JS JQ 正则三种不同写法

    <script> function trim(str) { return str.replace(/(^\s*|\s*$)/g, "") } console.log(t ...

  5. Android——单元测试

    在实际开发中,开发android软件的过程需要不断地进行测试.而使用Junit测试框架,侧是正规的Android开发的必用技术,在Junit中可以得到组件,可以模拟发送事件和检测程序处理的正确性. 第 ...

  6. mongodb日志服务器方案

    描述 目前要做的是多台服务器上的程序日志(如订购日志,交易日志,接口是否成功等)汇总到1个mongodb服务器,每日大约1亿的量,然后有图表实时展现,和报表展现日志信息 注意: 没有把所有日志放入1张 ...

  7. pipe----管道

    #include <stdio.h> #include <unistd.h> #include <stdlib.h> #include <string.h&g ...

  8. 在同一台电脑上部署多个tomcat服务器

    因为在写一些小的项目的时候,需要另外用到一台图片服务器,所以不得不开启多个tomcat了. 在这里我用的是tomcat 9.0,一个是正常时的tomcat,一个是图片服务器,在这里我就用tomcat1 ...

  9. Linux 防火墙firewalld

    1.列出所有支持的 zone 和查看当前的默认 zone:[root@lxjtest ~]# systemctl start firewalld[root@lxjtest ~]# firewall-c ...

  10. New text file line delimiter

    Window -> Preferences -> General -> Workspace : Text file encoding :Default : 选择此项将设定文件为系统默 ...