与上一篇博客类似,这篇博客介绍使用OpenCV实现的MFC程序,可以实现单个人脸的验证,并在图像和界面给出识别结果。效果图如下:
置信度一栏可以填写判定的阈值,默认为70。打开摄像头才能进行验证或拍照,拍照之前可以清除之前拍摄的训练图片,可以拍摄多张用于识别。其中mfc中的图像显示需要用到CvImage.cpp和CvImage.h两个文件,该代码在比较新的OpenCV内已经没有了,所以可以直接用我代码里的。
有人说代码的检测率不高,其实可以归结为两方面的原因,第一人脸检测率不高,这个可以通过嵌套检测嘴角、眼睛等来降低,或者背景、光照固定的话可以通过图像差分来解决;第二是识别方法本身的问题,如果想提高识别率,可以添加多张不同姿态、光照下的人脸作为训练的样本,如果有时间的话可以在采集图像时给出一个人脸框,引导用户对齐人脸进行采集,三星手机解除锁屏就有这么一个功能。
下面贴一下主要的代码:
VideoMFCDlg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
// VideoMFCDlg.cpp : implementation file
//
#include "stdafx.h"
#include "VideoMFC.h"
#include "VideoMFCDlg.h"
#include "afxdialogex.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#endif
CvCapture* capture;
CRect rect;
CDC *pDC;
HDC hDC;
CWnd *pwnd;
CvVideoWriter* writer = 0;
IplImage *resizeRes; //存放检测到的人脸
IplImage* faceGray; //存放检测到的人脸 灰度图像
bool bool_cameOpen = false ; //全局变量 标志摄像头是否打开
bool bool_picNum = false ; //全局变量 标志训练图片是否为空
bool bool_detec_reco = false ; //全局变量
double dConfidence = 0; //置信度
int predictedLabel = 100000;
CvMemStorage* storage = 0;
CvHaarClassifierCascade* cascade = 0;
CvHaarClassifierCascade* nested_cascade = 0;
int use_nested_cascade = 0;
const char * cascade_name =
"../data/haarcascades/haarcascade_frontalface_alt.xml" ;
const char * nested_cascade_name =
"../data/haarcascade_eye_tree_eyeglasses.xml" ;
double scale = 1;
int num_components = 9;
double facethreshold = 9.0;
//cv::Ptr<cv::FaceRecognizer> model = cv::createFisherFaceRecognizer();
cv::Ptr<cv::FaceRecognizer> model = cv::createLBPHFaceRecognizer(); //LBP的这个方法在单个人脸验证方面效果最好
//cv::Ptr<cv::FaceRecognizer> model = cv::createEigenFaceRecognizer();
vector<Mat> images;
vector< int > labels;
IplImage *frame, *frame_copy = 0;
IplImage *image = 0;
const char * scale_opt = "--scale=" ; // 分类器选项指示符号
int scale_opt_len = ( int ) strlen (scale_opt);
const char * cascade_opt = "--cascade=" ;
int cascade_opt_len = ( int ) strlen (cascade_opt);
const char * nested_cascade_opt = "--nested-cascade" ;
int nested_cascade_opt_len = ( int ) strlen (nested_cascade_opt);
int i;
const char * input_name = 0;
// CAboutDlg dialog used for App About
CString strConfidence = "70" ;
CEdit* pEdtConfidence;
CString strTip = "" ;
CEdit* pTip;
class CAboutDlg : public CDialogEx
{
public :
CAboutDlg();
// Dialog Data
enum { IDD = IDD_ABOUTBOX };
protected :
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
// Implementation
protected :
DECLARE_MESSAGE_MAP()
};
CAboutDlg::CAboutDlg() : CDialogEx(CAboutDlg::IDD)
{
}
void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialogEx::DoDataExchange(pDX);
}
BEGIN_MESSAGE_MAP(CAboutDlg, CDialogEx)
END_MESSAGE_MAP()
// CVideoMFCDlg dialog
CVideoMFCDlg::CVideoMFCDlg(CWnd* pParent /*=NULL*/ )
: CDialogEx(CVideoMFCDlg::IDD, pParent)
{
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}
void CVideoMFCDlg::DoDataExchange(CDataExchange* pDX)
{
CDialogEx::DoDataExchange(pDX);
}
BEGIN_MESSAGE_MAP(CVideoMFCDlg, CDialogEx)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_BUTTON1, &CVideoMFCDlg::OnBnClickedButton1)
ON_WM_TIMER()
ON_BN_CLICKED(IDC_BUTTON2, &CVideoMFCDlg::OnBnClickedButton2)
ON_WM_CLOSE()
ON_EN_CHANGE(IDC_EdtConfidence, &CVideoMFCDlg::OnEnChangeEdtconfidence)
ON_BN_CLICKED(IDC_Photograph, &CVideoMFCDlg::OnBnClickedPhotograph)
ON_BN_CLICKED(IDC_Recognize, &CVideoMFCDlg::OnBnClickedRecognize)
ON_BN_CLICKED(IDC_ClearPictures, &CVideoMFCDlg::OnBnClickedClearpictures)
END_MESSAGE_MAP()
// CVideoMFCDlg message handlers
BOOL CVideoMFCDlg::OnDestroy()
{
cvReleaseImage( &resizeRes );
cvReleaseImage( &faceGray );
return TRUE;
}
BOOL CVideoMFCDlg::OnInitDialog()
{
CDialogEx::OnInitDialog();
// Add "About..." menu item to system menu.
// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);
CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
BOOL bNameValid;
CString strAboutMenu;
bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);
ASSERT(bNameValid);
if (!strAboutMenu.IsEmpty())
{
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
}
}
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon
// TODO: Add extra initialization here
pwnd = GetDlgItem(IDC_ShowImage);
//pwnd->MoveWindow(35,30,352,288);
pDC =pwnd->GetDC();
//pDC =GetDC();
hDC= pDC->GetSafeHdc();
pwnd->GetClientRect(&rect);
GetDlgItem(IDC_BUTTON2)->EnableWindow( false );
GetDlgItem(IDC_Photograph)->EnableWindow( false );
GetDlgItem(IDC_Recognize)->EnableWindow( false );
pEdtConfidence = (CEdit*) GetDlgItem(IDC_EdtConfidence);
pTip = (CEdit*) GetDlgItem(IDC_Tip);
pEdtConfidence->SetWindowText( "70" );
pEdtConfidence->GetWindowText(strConfidence);
pTip->SetWindowText( strTip );
if (read_img_number()>0)
bool_picNum = true ;
else
bool_picNum = false ;
return TRUE; // return TRUE unless you set the focus to a control
}
void CVideoMFCDlg::OnSysCommand( UINT nID, LPARAM lParam)
{
if ((nID & 0xFFF0) == IDM_ABOUTBOX)
{
CAboutDlg dlgAbout;
dlgAbout.DoModal();
}
else
{
CDialogEx::OnSysCommand(nID, lParam);
}
}
// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.
void CVideoMFCDlg::OnPaint()
{
if (IsIconic())
{
CPaintDC dc( this ); // device context for painting
SendMessage(WM_ICONERASEBKGND, reinterpret_cast < WPARAM >(dc.GetSafeHdc()), 0);
// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;
// Draw the icon
dc.DrawIcon(x, y, m_hIcon);
}
else
{
CDialogEx::OnPaint();
}
}
// The system calls this function to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CVideoMFCDlg::OnQueryDragIcon()
{
return static_cast < HCURSOR >(m_hIcon);
}
/*****************************************打开摄像头*******************************************/
void CVideoMFCDlg::OnBnClickedButton1()
{
// TODO: Add your control notification handler code here
//AfxMessageBox("OK");
if (!capture)
{
capture = cvCaptureFromCAM(0);
//AfxMessageBox("OK");
}
if (!capture)
{
AfxMessageBox( "无法打开摄像头" );
return ;
}
//writer=cvCreateVideoWriter("MyVideo.avi",CV_FOURCC('x','v','I','D'),25,cvSize(640,480));
// 测试
IplImage* m_Frame;
m_Frame=cvQueryFrame(capture);
CvvImage m_CvvImage;
m_CvvImage.CopyOf(m_Frame,1);
if ( true )
{
m_CvvImage.DrawToHDC(hDC, &rect);
//cvWaitKey(10);
}
// 设置计时器,每10ms触发一次事件
SetTimer(1,10,NULL);
cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 ); // 加载分类器
if ( !cascade )
{
MessageBox( "无法加载分类器文件,请确认!" );
}
storage = cvCreateMemStorage(0); // 创建内存存储器
//if( !input_name || (isdigit(input_name[0]) && input_name[1] == '\0') ) // 判断输入参数是视频序号,还是文件
capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' ); // 创建视频读取结构
/*
else if( input_name )
{
image = cvLoadImage( input_name, 1 ); // 如果是图像则加载
if( !image )
{
capture = cvCaptureFromAVI( input_name ); // 不是图像则尝试视频读取
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);
cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480); ////////////////////////////////////////////////////////////////////
}
}*/
//else
// image = cvLoadImage( "lena.bmp", 1 ); //都没有则调用程序所在目录的lena.jpg图片
//cvNamedWindow( "result", 1 );
GetDlgItem(IDC_BUTTON1)->EnableWindow( false );
GetDlgItem(IDC_BUTTON2)->EnableWindow( true );
GetDlgItem(IDC_Photograph)->EnableWindow( true );
GetDlgItem(IDC_Recognize)->EnableWindow( true );
bool_detec_reco = false ;
bool_cameOpen = true ;
}
/********************************************设置定时器*********************************************/
void CVideoMFCDlg::OnTimer( UINT_PTR nIDEvent)
{
//显示摄像头
IplImage* m_Frame;
m_Frame=cvQueryFrame(capture);
//AllocConsole();
//判断是检测还是识别人脸
if (bool_cameOpen)
{
if (!bool_detec_reco) //false只为识别
{
detect_and_draw(m_Frame); //检测人脸
//_cprintf("%s\n", "jiance");
}
else if (bool_picNum) //false代表训练图片为空
recog_and_draw(m_Frame); //检测和识别人脸
}
CvvImage m_CvvImage;
m_CvvImage.CopyOf(m_Frame,1);
if ( true )
{
m_CvvImage.DrawToHDC(hDC, &rect);
//cvWriteFrame(writer,m_Frame); //将帧图像通过writer写入文件
//cvWaitKey(10);
}
if (bool_detec_reco)
{
if (predictedLabel <= dConfidence)
{
CString tipPhoto = strTip + "\r\n验证成功!!" ;
pTip->SetWindowText( tipPhoto );
}
else
{
CString tipPhoto = strTip + "\r\n验证失败!!" ;
pTip->SetWindowText( tipPhoto );
}
}
CDialogEx::OnTimer(nIDEvent);
}
//关闭摄像头按钮
void CVideoMFCDlg::OnBnClickedButton2()
{
// TODO: Add your control notification handler code here
cvReleaseVideoWriter(&writer);
cvReleaseCapture(&capture);
CDC MemDC;
CBitmap m_Bitmap1;
m_Bitmap1.LoadBitmap(IDB_BITMAP1);
MemDC.CreateCompatibleDC(NULL);
MemDC.SelectObject(&m_Bitmap1);
pDC->StretchBlt(rect.left,rect.top,rect.Width(),rect.Height(),&MemDC,0,0,48,48,SRCCOPY);
GetDlgItem(IDC_BUTTON1)->EnableWindow( true );
GetDlgItem(IDC_BUTTON2)->EnableWindow( false );
GetDlgItem(IDC_Photograph)->EnableWindow( false );
GetDlgItem(IDC_Recognize)->EnableWindow( false );
bool_cameOpen = false ;
}
//关闭窗体
void CVideoMFCDlg::OnClose()
{
// TODO: Add your message handler code here and/or call default
cvReleaseCapture(&capture);
CDialogEx::OnClose();
}
void CVideoMFCDlg::OnEnChangeEdtconfidence()
{
}
//拍照按钮
void CVideoMFCDlg::OnBnClickedPhotograph()
{
// TODO: 在此添加控件通知处理程序代码
if (!faceGray)
{
pTip->GetWindowText(strTip);
CString tipPhoto = strTip + "\r\n拍照失败,请将摄像头对准人脸" ;
pTip->SetWindowText( tipPhoto );
return ;
}
Mat img(faceGray,0);
stringstream ss;
ss << (read_img_number()+1);
string faceImgName = "..//einfacedata//trainingdata//" +ss.str()+ ".jpg" ;
imwrite(faceImgName,img);
//pTip->GetWindowText(strTip);
CString tipPhoto = strTip + "\r\n拍照成功!已存为" + ( "/einfacedata/trainingdata/" +ss.str()+ ".jpg" ).c_str();
pTip->SetWindowText( tipPhoto );
//MessageBox("OK");
}
//开始验证按钮
void CVideoMFCDlg::OnBnClickedRecognize()
{
// TODO: 在此添加控件通知处理程序代码
images.clear();
labels.clear();
pEdtConfidence->GetWindowText(strConfidence);
try
{
dConfidence = atoi (( const char *)strConfidence);
}
catch (cv::Exception &e)
{
MessageBox( "置信度请输入整数!" );
return ;
}
model->set( "threshold" , dConfidence);
//string output_folder;
//output_folder = string("../einfacedata");
//读取你的CSV文件路径
//string fn_csv = string("../einfacedata/at.txt");
//两个容器来存放图像数据和对应的标签
/*
try
{
read_csv(fn_csv, images, labels);
}
catch(cv::Exception &e)
{
cerr<<"Error opening file "<<fn_csv<<". Reason: "<<e.msg<<endl;
exit(1);
}
*/
if (!read_img(images, labels))
{
AfxMessageBox( "Error in reading images!" );
//MessageBox("Error in reading images!");
images.clear();
labels.clear();
return ;
}
//如果没有读到足够的图片,就退出
if (images.size() < 1)
{
MessageBox( "This demo needs at least 1 images to work!" );
return ;
}
//training
model->train(images, labels);
bool_detec_reco = true ;
bool_picNum = true ;
}
//清除训练图片
void CVideoMFCDlg::OnBnClickedClearpictures()
{
// TODO: 在此添加控件通知处理程序代码
if (delete_img())
{
//pTip->GetWindowText(strTip);
CString tipPhoto = strTip + "\r\n删除成功!" ;
pTip->SetWindowText( tipPhoto );
bool_detec_reco = false ;
bool_picNum = false ;
}
else
{
//pTip->GetWindowText(strTip);
CString tipPhoto = strTip + "\r\n删除失败!" ;
pTip->SetWindowText( tipPhoto );
}
}
|
detect_recog.cpp和上一篇博客类似
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>
#include "detect_recog.h"
#include <opencv2\contrib\contrib.hpp>
#include <opencv2\core\core.hpp>
#include <opencv2\highgui\highgui.hpp>
#include <iostream>
#include <fstream>
#include <sstream>
#include <stdio.h>
#include <io.h>
#include <direct.h>
#include <sys/types.h>
#include <conio.h>
using namespace std;
using namespace cv;
void detect_and_draw( IplImage* img ) // 只是检测,并圈出人脸
{
static CvScalar colors[] =
{
{{0,0,255}},
{{0,128,255}},
{{0,255,255}},
{{0,255,0}},
{{255,128,0}},
{{255,255,0}},
{{255,0,0}},
{{255,0,255}}
};
IplImage *gray, *small_img;
int i, j;
gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)), 8, 1 );
cvCvtColor( img, gray, CV_BGR2GRAY ); // 彩色RGB图像转为灰度图像
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img ); // 直方图均衡化
cvClearMemStorage( storage );
if ( cascade )
{
double t = ( double )cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(30, 30) );
t = ( double )cvGetTickCount() - t; // 统计检测使用时间
//printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
for ( i = 0; i < (faces ? faces->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); // 将faces数据从CvSeq转为CvRect
CvMat small_img_roi;
CvSeq* nested_objects;
CvPoint center,recPt1,recPt2;
CvScalar color = colors[i%8]; // 使用不同颜色绘制各个face,共八种色
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale); // 找出faces中心
center.y = cvRound((r->y + r->height*0.5)*scale);
recPt1.x = cvRound((r->x)*scale);
recPt1.y = cvRound((r->y)*scale);
recPt2.x = cvRound((r->x + r->width)*scale);
recPt2.y = cvRound((r->y + r->height)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvGetSubRect( small_img, &small_img_roi, *r );
IplImage *result;
CvRect roi;
roi = *r;
result = cvCreateImage( cvSize(r->width, r->height), img->depth, img->nChannels );
cvSetImageROI(img,roi);
// 创建子图像
cvCopy(img,result);
cvResetImageROI(img);
//IplImage *resizeRes;
CvSize dst_cvsize;
dst_cvsize.width=( int )(100);
dst_cvsize.height=( int )(100);
resizeRes=cvCreateImage(dst_cvsize,result->depth,result->nChannels);
cvResize(result,resizeRes,CV_INTER_NN);
faceGray = cvCreateImage(cvGetSize(resizeRes), IPL_DEPTH_8U, 1); //创建目标图像
cvCvtColor(resizeRes,faceGray,CV_BGR2GRAY); //cvCvtColor(src,des,CV_BGR2GRAY)
cvShowImage( "resize" , resizeRes );
cvRectangle(img,recPt1,recPt2,color,1, 8,0);
//rectangle(img,recPt1,recPt2,color,1,8,0);
//cvCircle( img, center, radius, color, 3, 8, 0 ); // 从中心位置画圆,圈出脸部区域
if ( !nested_cascade )
continue ;
nested_objects = cvHaarDetectObjects( &small_img_roi, nested_cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(0, 0) );
for ( j = 0; j < (nested_objects ? nested_objects->total : 0); j++ )
{
CvRect* nr = (CvRect*)cvGetSeqElem( nested_objects, j );
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
cvCircle( img, center, radius, color, 3, 8, 0 );
}
}
}
//cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );
}
//检测并识别人脸,并在每帧图片上写入结果
void recog_and_draw( IplImage* img )
{
static CvScalar colors[] =
{
{{0,0,255}},
{{0,128,255}},
{{0,255,255}},
{{0,255,0}},
{{255,128,0}},
{{255,255,0}},
{{255,0,0}},
{{255,0,255}}
};
IplImage *gray, *small_img;
int i, j;
gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );
small_img = cvCreateImage( cvSize( cvRound (img->width/scale),
cvRound (img->height/scale)), 8, 1 );
cvCvtColor( img, gray, CV_BGR2GRAY ); // 彩色RGB图像转为灰度图像
cvResize( gray, small_img, CV_INTER_LINEAR );
cvEqualizeHist( small_img, small_img ); // 直方图均衡化
cvClearMemStorage( storage );
if ( cascade )
{
double t = ( double )cvGetTickCount();
CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(30, 30) );
t = ( double )cvGetTickCount() - t; // 统计检测使用时间
//printf( "detection time = %gms\n", t/((double)cvGetTickFrequency()*1000.) );
for ( i = 0; i < (faces ? faces->total : 0); i++ )
{
CvRect* r = (CvRect*)cvGetSeqElem( faces, i ); // 将faces数据从CvSeq转为CvRect
CvMat small_img_roi;
CvSeq* nested_objects;
CvPoint center,recPt1,recPt2;
CvScalar color = colors[i%8]; // 使用不同颜色绘制各个face,共八种色
int radius;
center.x = cvRound((r->x + r->width*0.5)*scale); // 找出faces中心
center.y = cvRound((r->y + r->height*0.5)*scale);
recPt1.x = cvRound((r->x)*scale);
recPt1.y = cvRound((r->y)*scale);
recPt2.x = cvRound((r->x + r->width)*scale);
recPt2.y = cvRound((r->y + r->height)*scale);
radius = cvRound((r->width + r->height)*0.25*scale);
cvGetSubRect( small_img, &small_img_roi, *r );
IplImage *result;
CvRect roi;
roi = *r;
result = cvCreateImage( cvSize(r->width, r->height), img->depth, img->nChannels );
cvSetImageROI(img,roi);
// 创建子图像
cvCopy(img,result);
cvResetImageROI(img);
//IplImage *resizeRes;
CvSize dst_cvsize;
dst_cvsize.width=( int )(100);
dst_cvsize.height=( int )(100);
resizeRes=cvCreateImage(dst_cvsize,result->depth,result->nChannels);
cvResize(result,resizeRes,CV_INTER_NN);
faceGray = cvCreateImage(cvGetSize(resizeRes), IPL_DEPTH_8U, 1); //创建目标图像
cvCvtColor(resizeRes,faceGray,CV_BGR2GRAY); //cvCvtColor(src,des,CV_BGR2GRAY)
cvShowImage( "resize" , resizeRes );
cvRectangle(img,recPt1,recPt2,color,3, 8,0);
//cvCircle( img, center, radius, color, 3, 8, 0 ); // 从中心位置画圆,圈出脸部区域
Mat test = faceGray;
//images[images.size() - 1] = test;
model->train(images, labels);
//predictedLabel = model->predict(test);
double predicted_confidence = 0.0;
model->predict(test,predictedLabel,predicted_confidence);
stringstream strStream;
strStream<<predicted_confidence;
string ss = strStream.str();
cvText(img, ss.c_str(), r->x+r->width*0.5, r->y);
if (predicted_confidence <= dConfidence)
cvText(img, "Result:YES" , 0, 30);
else
cvText(img, "Result:NO" , 0, 30);
//cout << "predict:"<<model->predict(test) << endl;
//cout << "predict:"<< predictedLabel << "\nconfidence:" << predicted_confidence << endl;
if ( !nested_cascade )
continue ;
nested_objects = cvHaarDetectObjects( &small_img_roi, nested_cascade, storage,
1.1, 2, 0
//|CV_HAAR_FIND_BIGGEST_OBJECT
//|CV_HAAR_DO_ROUGH_SEARCH
//|CV_HAAR_DO_CANNY_PRUNING
//|CV_HAAR_SCALE_IMAGE
,
cvSize(0, 0) );
for ( j = 0; j < (nested_objects ? nested_objects->total : 0); j++ )
{
CvRect* nr = (CvRect*)cvGetSeqElem( nested_objects, j );
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
radius = cvRound((nr->width + nr->height)*0.25*scale);
cvCircle( img, center, radius, color, 3, 8, 0 );
}
}
}
//cvShowImage( "result", img );
cvReleaseImage( &gray );
cvReleaseImage( &small_img );
}
void cvText(IplImage* img, const char * text, int x, int y)
{
CvFont font;
double hscale = 1.0;
double vscale = 1.0;
int linewidth = 2;
cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX | CV_FONT_ITALIC,hscale,vscale,0,linewidth);
CvScalar textColor =cvScalar(0,255,255);
CvPoint textPos =cvPoint(x, y);
cvPutText(img, text, textPos, &font,textColor);
}
Mat norm_0_255(cv::InputArray _src)
{
Mat src = _src.getMat();
Mat dst;
switch (src.channels())
{
case 1:
cv::normalize(_src, dst, 0, 255, cv::NORM_MINMAX, CV_8UC1);
break ;
case 3:
cv::normalize(_src, dst, 0, 255, cv::NORM_MINMAX, CV_8UC3);
break ;
default :
src.copyTo(dst);
break ;
}
return dst;
}
void read_csv( const string &filename, vector<Mat> &images, vector< int > &labels, char separator)
{
std::ifstream file(filename.c_str(), ifstream::in);
if (!file)
{
string error_message = "No valid input file was given." ;
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line))
{
stringstream liness(line);
getline(liness, path, separator); //遇到分号就结束
getline(liness, classlabel); //继续从分号后面开始,遇到换行结束
if (!path.empty() && !classlabel.empty())
{
images.push_back(imread(path, 0));
labels.push_back( atoi (classlabel.c_str()));
}
}
}
//实现了从trainningdata 目录下直接读取jpg文件作为训练集
bool read_img(vector<Mat> &images, vector< int > &labels)
{
long file;
struct _finddata_t find;
//AllocConsole();
string path = "..//einfacedata//trainingdata/" ;
char filepath[60];
//_chdir("..//einfacedata//trainingdata");
if ((file=_findfirst( "..//einfacedata//trainingdata/*.jpg" , &find))==-1L)
{
AfxMessageBox( "Cannot find the dir" );
return false ;
}
int i = 0;
images.push_back(imread(path+find.name, 0));
labels.push_back(0);
while (_findnext(file, &find)==0)
{
//_cprintf("%s\n", path+find.name);
//_cprintf("%d\n", i++);
images.push_back(imread(path+find.name, 0));
labels.push_back(0);
}
_findclose(file);
return true ;
}
//实现了从trainningdata 目录下读取jpg文件数目
int read_img_number()
{
long file;
int i = 0;
struct _finddata_t find;
//AllocConsole();
string path = "..//einfacedata//trainingdata/" ;
char filepath[60];
if ((file=_findfirst( "..//einfacedata//trainingdata/*.jpg" , &find))==-1L)
return i;
i++;
while (_findnext(file, &find)==0)
{
i++;
}
_findclose(file);
return i;
}
bool delete_img()
{
system ( "del ..\\einfacedata\\trainingdata\\" );
return true ;
}
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/iteye_13202/article/details/82554526