Sharding JDBC如何分库分表?看完你就会了

时间:2021-08-07 04:19:19

Sharding JDBC的操作分为配置使用、读写分离、分库分表以及应用等,今天我们主要来了解一下关于分库分表的操作,如果你对此感兴趣的话,那我们就开始吧。

 

环境准备

 

pom.xml

 

<parent>

 

    <groupId>org.springframework.boot</groupId>

 

    <artifactId>spring-boot-starter-parent</artifactId>

 

    <version>2.1.3.RELEASE</version></parent>

 

<properties>

 

    <java.version>1.8</java.version>

 

    <sharding.version>3.1.0</sharding.version></properties>

 

<dependencies>

 

    <dependency>

 

        <groupId>io.shardingsphere</groupId>

 

        <artifactId>sharding-jdbc-core</artifactId>

 

        <version>${sharding.version}</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>io.shardingsphere</groupId>

 

        <artifactId>sharding-jdbc-spring-boot-starter</artifactId>

 

        <version>${sharding.version}</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>com.alibaba</groupId>

 

        <artifactId>druid</artifactId>

 

        <version>1.1.10</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>org.mybatis</groupId>

 

        <artifactId>mybatis</artifactId>

 

        <version>3.4.5</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>org.mybatis.spring.boot</groupId>

 

        <artifactId>mybatis-spring-boot-starter</artifactId>

 

        <version>1.3.1</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>mysql</groupId>

 

        <artifactId>mysql-connector-java</artifactId>

 

        <version>5.1.46</version>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>org.springframework.boot</groupId>

 

        <artifactId>spring-boot-starter</artifactId>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>org.projectlombok</groupId>

 

        <artifactId>lombok</artifactId>

 

    </dependency>

 

 

 

    <dependency>

 

        <groupId>org.springframework.boot</groupId>

 

        <artifactId>spring-boot-starter-test</artifactId>

 

        <scope>test</scope>

 

    </dependency></dependencies>

 

<build>

 

    <plugins>

 

        <plugin>

 

            <groupId>org.springframework.boot</groupId>

 

            <artifactId>spring-boot-maven-plugin</artifactId>

 

        </plugin>

 

    </plugins></build>

 

domain

 

// 建立[email protected]@[email protected]@[email protected] class Employee {

 

    private Long id;

 

    private String name;}

 

配置类

 

@[email protected]("cn.wolfcode.sharding.mapper")public class ShardingApplication { }

 

分库分表

 

案例模型

 

把数据分别存放在两台服务器的两个数据库中表,通过分片算法来决定当前的数据存放在哪个数据库的哪个表中,由于一个连接池只能连接一个特定的数据库,所以这里需要创建多个连接池对象

 

建表

 

-- 分别在2台服务器中建立数据库sharding,并且建表employee_0和employee_1CREATE TABLE `employee_0` (

 

  `id` bigint(20) PRIMARY KEY AUTO_INCREMENT,

 

  `name` varchar(255) DEFAULT NULL) ENGINE=InnoDB DEFAULT CHARSET=utf8;-- ###################################CREATE TABLE `employee_1` (

 

  `id` bigint(20) PRIMARY KEY AUTO_INCREMENT,

 

  `name` varchar(255) DEFAULT NULL) ENGINE=InnoDB DEFAULT CHARSET=utf8;

 

application.properties

 

# 定义连接池

 

sharding.jdbc.datasource.names=db0,db1

 

 

 

# 格式sharding.jdbc.datasource.连接池名.xxx:设置4要素信息

 

sharding.jdbc.datasource.db0.type=com.alibaba.druid.pool.DruidDataSource

 

sharding.jdbc.datasource.db0.driver-class-name=com.mysql.jdbc.Driver

 

sharding.jdbc.datasource.db0.url=jdbc:mysql://db0Ip:port/sharing

 

sharding.jdbc.datasource.db0.username=xxx

 

sharding.jdbc.datasource.db0.password=xxx

 

 

 

sharding.jdbc.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource

 

sharding.jdbc.datasource.db1.driver-class-name=com.mysql.jdbc.Driver

 

sharding.jdbc.datasource.db1.url=jdbc:mysql://db1Ip:port/sharing

 

sharding.jdbc.datasource.db1.username=xxx

 

sharding.jdbc.datasource.db1.password=xxx

 

 

 

# 设置分库规则

 

# sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column:分库列

 

# sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-expression:分库算法

 

sharding.jdbc.config.sharding.default-database-strategy.inline.sharding-column=id

 

sharding.jdbc.config.sharding.default-database-strategy.inline.algorithm-expression=db$->{id % 2}

 

 

 

# 绑定逻辑表

 

sharding.jdbc.config.sharding.binding-tables=employee

 

 

 

# 设置分表规则

 

# sharding.jdbc.config.sharding.tables.逻辑表.actual-data-nodes:逻辑表对应的真实表

 

# sharding.jdbc.config.sharding.tables.逻辑表.table-strategy.inline.sharding-column:分表列

 

# sharding.jdbc.config.sharding.tables.逻辑表.table-strategy.inline.algorithm-expression:分表算法

 

# sharding.jdbc.config.sharding.tables.逻辑表.key-generator-column-name:主键列

 

sharding.jdbc.config.sharding.tables.employee.actual-data-nodes=db$->{0..1}.employee_$->{0..1}

 

sharding.jdbc.config.sharding.tables.employee.table-strategy.inline.sharding-column=id

 

sharding.jdbc.config.sharding.tables.employee.table-strategy.inline.algorithm-expression=employee_$->{id % 2}

 

sharding.jdbc.config.sharding.tables.employee.key-generator-column-name=id

 

 

 

# 打印日志

 

sharding.jdbc.config.props.sql.show=true

 

mapper

 

/**

 

 * 这里写的employee表是上面所配置的逻辑表

 

 * 底层会根据分片规则,把我们写的逻辑表改写为数据库中的真实表

 

 */@Mapperpublic interface EmployeeMapper {

 

    @Select("select * from employee")

 

    List<Employee> selectAll();

 

 

 

    @Insert("insert into employee (name) values (#{name})")

 

    void inser(Employee entity);}

 

测试

 

@RunWith(SpringRunner.class)@SpringBootTest(classes=ShardingApplication.class)public class ShardingApplicationTests {

 

 

 

    @Autowired

 

    private EmployeeMapper employeeMapper;

 

 

 

    @Test

 

    public void save() {

 

        for (int i = 0; i < 10; i ) {

 

            Employee employee = new Employee();

 

            employee.setName("xx" i);

 

            employeeMapper.inser(employee);

 

        }

 

    }

 

 

 

    @Test

 

    public void list() {

 

        employeeMapper.selectAll().forEach(System.out::println);

 

    }}

 

优缺点

 

  • 拆分后单表数据量比较小,单表大数据被拆分,解决了单表大数据访问问题
  • 分表以什么切分如果弄的不好,导致多次查询,而且有时候要跨库操作,甚至导致join无法使用,对排序分组等有性能影响
  • 之前的原子操作被拆分成多个操作,事务处理变得复杂
  • 多个DB维护成本增加

 

 

 

 

看完这些操作后不妨自己去试试,实践才能检验真知,如果遇到了问题,也可以及时向我询问,我也会尽我所力帮助你。