POJ 3904 Sky Code (容斥原理)

时间:2023-12-25 10:20:07
B - Sky Code

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34

题意:给定n个数,从n个数找出四个数,使这四个数的最大公约数为1,找出有多少对这样的组合。

题解:四个数的公约数为1,并不代表四个数两两互质。比如(2,3,4,5)公约数为1,但是

   2和4并不互质。从反面考虑,先求出四个数公约数不为1的情况个数,用总的方案个数

   减去四个数公约数不为1的情况个数就是所求。

   求四个数公约数不为1的情况个数,需要将N个数每个数质因数分解,纪录下所有不同

   的素因子所能组成的因子(就是4个数的公约数),并统计构成每种因子的素因子个数,

   和因子总数。然后再计算组合数。比如说因子2的个数为a,则四个数公约数为2的个数

   为C(a,4),因子3的个数为b,则四个数公约数为3的个数为C(b,4),因子6(2*3)的个

   数为c,则四个数公约数的个数为C(c,4)。

   但是公约数为2的情况中或者公约数为3的情况中可能包括公约数为6的情况,相当于几

   个集合求并集,这就需要容斥定理来做。

   容斥原理应用,以2为因子的数有a个,3为因子 的数有b个,6为因子的数有c个,

   n个数不互质的四元组个数为C(a,4)+C(b,4)-C(c,4) (含奇数个素因子的加,偶数个素因子的减),

   下面就是统计出2,3,5这些因子的倍数的个数,对C(a,4)容斥!

代码:弄清思路以后就很好做了,一环扣一环,用二进制进行枚举,很棒!

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
using namespace std;
const int maxn=1e4+;
typedef long long ll; //因为c(5000,4)=26010428123750。所以要用 long long 能long long 就 long long
ll c(ll n)
{
return n*(n-)*(n-)*(n-)/;
}
ll prime[],cnt=,num[maxn][]; //0代表数目 1代表奇偶性
void solve(ll n)
{
//memset(prime,0,sizeof(prime)); //这句话和cin同时用会超时 所以涉及到复杂度全用scanf
cnt=;
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
prime[cnt++]=i;
while(n%i==)
n/=i;
}
}
if(n!=)
prime[cnt++]=n; //这里一定注意是n不是i
for(int i=;i<(<<cnt);i++) //i=0无意义 num[1][] 无意义
{
ll flag=,tmp=;
for(int j=;j<cnt;j++)
{
if(i&(<<j))
{
flag++;
tmp*=prime[j];
}
}
//其实这里可以优化一下 若大于2500的数作为因子 他的倍数不可能够四个的
//不过是否优化对时间无影响
num[tmp][]++; //数目
num[tmp][]=flag;//奇偶性
}
}
int main()
{
ll n,data;
while(scanf("%lld",&n)!=EOF) //是lld
{
memset(num,,sizeof(num));
for(int i=;i<n;i++)
{
scanf("%lld",&data);
solve(data);
}
ll ans=c(n);
for(int i=;i<=maxn/;i++)
{
if(num[i][]) //0代表数目
{
if(num[i][]&) //1代表flag奇偶性
ans-=c(num[i][]); //注意这里用的是数目
//不是num[i][1] 更不是num[1]什么 是num[i][0]
else
ans+=c(num[i][]);
}
}
printf("%lld\n",ans);
}
return ;
}