http://blog.csdn.net/xj626852095/article/details/52767963
step 1
使用explain 查看执行计划, 5.6后可以加参数 explain format=json xxx 输出json格式的信息
step 2
使用profiling详细的列出在每一个步骤消耗的时间,前提是先执行一遍语句。
#打开profiling 的设置
SET profiling = 1;
SHOW VARIABLES LIKE '%profiling%'; #查看队列的内容
show profiles;
#来查看统计信息
show profile block io,cpu for query 3;
step 3
Optimizer trace是MySQL5.6添加的新功能,可以看到大量的内部查询计划产生的信息, 先打开设置,然后执行一次sql,最后查看`information_schema`.`OPTIMIZER_TRACE`的内容
#打开设置
SET optimizer_trace='enabled=on';
#最大内存根据实际情况而定, 可以不设置
SET OPTIMIZER_TRACE_MAX_MEM_SIZE=1000000;
SET END_MARKERS_IN_JSON=ON;
SET optimizer_trace_limit = 1;
SHOW VARIABLES LIKE '%optimizer_trace%'; #执行所需sql后,查看该表信息即可看到详细的执行过程
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`;
MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式
http://blog.csdn.net/melody_mr/article/details/48950601
一 表结构如下:
CREATE TABLE t_audit_operate_log (
Fid bigint(16) AUTO_INCREMENT,
Fcreate_time int(10) unsigned NOT NULL DEFAULT '0',
Fuser varchar(50) DEFAULT '',
Fip bigint(16) DEFAULT NULL,
Foperate_object_id bigint(20) DEFAULT '0',
PRIMARY KEY (Fid),
KEY indx_ctime (Fcreate_time),
KEY indx_user (Fuser),
KEY indx_objid (Foperate_object_id),
KEY indx_ip (Fip)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
执行查询:
MySQL> explain select count(*) from t_audit_operate_log where Fuser='XX@XX.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: ref
possible_keys: indx_ctime,indx_user
key: indx_user
key_len: 153
ref: const
rows: 2007326
Extra: Using where
发现,使用了一个不合适的索引, 不是很理想,于是改成指定索引:
mysql> explain select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016@cyou-inc.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: t_audit_operate_log
type: range
possible_keys: indx_ctime
key: indx_ctime
key_len: 5
ref: NULL
rows: 670092
Extra: Using where
实际执行耗时,后者比前者快了接近10
问题: 很奇怪,优化器为何不选择使用 indx_ctime 索引,而选择了明显会扫描更多行的 indx_user 索引。
分析2个索引的数据量如下: 两个条件的唯一性对比:
select count(*) from t_audit_operate_log where Fuser='XX@XX.com';
+----------+
| count(*) |
+----------+
| 1238382 |
+----------+
select count(*) from t_audit_operate_log where Fcreate_time>=1407254400 and Fcreate_time<=1407427199;
+----------+
| count(*) |
+----------+
| 198920 |
+----------+
显然,使用索引indx_ctime好于indx_user,但MySQL却选择了indx_user. 为什么?
于是,使用 OPTIMIZER_TRACE进一步探索.
二 OPTIMIZER_TRACE的过程说明
以本处事例简要说明OPTIMIZER_TRACE的过程.
查看OPTIMIZER_TRACE方法:
1.set optimizer_trace='enabled=on'; --- 开启trace
2.set optimizer_trace_max_mem_size=1000000; --- 设置trace大小
3.set end_markers_in_json=on; --- 增加trace中注释
4.select * from information_schema.optimizer_trace\G;
- {\
- "steps": [\
- {\
- "join_preparation": {\ ---优化准备工作
- "select#": 1,\
- "steps": [\
- {\
- "expanded_query": "/* select#1 */ select count(0) AS `count(*)` from `t_audit_operate_log` where ((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
- }\
- ] /* steps */\
- } /* join_preparation */\
- },\
- {\
- "join_optimization": {\ ---优化工作的主要阶段,包括逻辑优化和物理优化两个阶段
- "select#": 1,\
- "steps": [\ ---优化工作的主要阶段, 逻辑优化阶段
- {\
- "condition_processing": {\ ---逻辑优化,条件化简
- "condition": "WHERE",\
- "original_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))",\
- "steps": [\
- {\
- "transformation": "equality_propagation",\ ---逻辑优化,条件化简,等式处理
- "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
- },\
- {\
- "transformation": "constant_propagation",\ ---逻辑优化,条件化简,常量处理
- "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
- },\
- {\
- "transformation": "trivial_condition_removal",\ ---逻辑优化,条件化简,条件去除
- "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
- }\
- ] /* steps */\
- } /* condition_processing */\
- },\ ---逻辑优化,条件化简,结束
- {\
- "table_dependencies": [\ ---逻辑优化, 找出表之间的相互依赖关系. 非直接可用的优化方式.
- {\
- "table": "`t_audit_operate_log`",\
- "row_may_be_null": false,\
- "map_bit": 0,\
- "depends_on_map_bits": [\
- ] /* depends_on_map_bits */\
- }\
- ] /* table_dependencies */\
- },\
- {\
- "ref_optimizer_key_uses": [\ ---逻辑优化, 找出备选的索引
- {\
- "table": "`t_audit_operate_log`",\
- "field": "Fuser",\
- "equals": "'XX@XX.com'",\
- "null_rejecting": false\
- }\
- ] /* ref_optimizer_key_uses */\
- },\
- {\
- "rows_estimation": [\ ---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描和索引扫描的代价估算. 每个索引都估算索引扫描代价
- {\
- "table": "`t_audit_operate_log`",\
- "range_analysis": {\
- "table_scan": {\---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描的代价
- "rows": 8150516,\
- "cost": 1.73e6\
- } /* table_scan */,\
- "potential_range_indices": [\ ---逻辑优化, 列出备选的索引. 后续版本字符串变为potential_range_indexes
- {\
- "index": "PRIMARY",\---逻辑优化, 本行表明主键索引不可用
- "usable": false,\
- "cause": "not_applicable"\
- },\
- {\
- "index": "indx_ctime",\---逻辑优化, 索引indx_ctime
- "usable": true,\
- "key_parts": [\
- "Fcreate_time",\
- "Fid"\
- ] /* key_parts */\
- },\
- {\
- "index": "indx_user",\---逻辑优化, 索引indx_user
- "usable": true,\
- "key_parts": [\
- "Fuser",\
- "Fid"\
- ] /* key_parts */\
- },\
- {\
- "index": "indx_objid",\---逻辑优化, 索引
- "usable": false,\
- "cause": "not_applicable"\
- },\
- {\
- "index": "indx_ip",\---逻辑优化, 索引
- "usable": false,\
- "cause": "not_applicable"\
- }\
- ] /* potential_range_indices */,\
- "setup_range_conditions": [\ ---逻辑优化, 如果有可下推的条件,则带条件考虑范围查询
- ] /* setup_range_conditions */,\
- "group_index_range": {\---逻辑优化, 如带有GROUPBY或DISTINCT,则考虑是否有索引可优化这种操作. 并考虑带有MIN/MAX的情况
- "chosen": false,\
- "cause": "not_group_by_or_distinct"\
- } /* group_index_range */,\
- "analyzing_range_alternatives": {\---逻辑优化,开始计算每个索引做范围扫描的花费(等值比较是范围扫描的特例)
- "range_scan_alternatives": [\
- {\
- "index": "indx_ctime",\ ---[A]
- "ranges": [\
- "1407081600 <= Fcreate_time <= 1407427199"\
- ] /* ranges */,\
- "index_dives_for_eq_ranges": true,\
- "rowid_ordered": false,\
- "using_mrr": true,\
- "index_only": false,\
- "rows": 688362,\
- "cost": 564553,\ ---逻辑优化,这个索引的代价最小
- "chosen": true\ ---逻辑优化,这个索引的代价最小,被选中. (比前面的table_scan 和其他索引的代价都小)
- },\
- {\
- "index": "indx_user",\
- "ranges": [\
- "XX@XX.com <= Fuser <= XX@XX.com"\
- ] /* ranges */,\
- "index_dives_for_eq_ranges": true,\
- "rowid_ordered": true,\
- "using_mrr": true,\
- "index_only": false,\
- "rows": 1945894,\
- "cost": 1.18e6,\
- "chosen": false,\
- "cause": "cost"\
- }\
- ] /* range_scan_alternatives */,\
- "analyzing_roworder_intersect": {\
- "usable": false,\
- "cause": "too_few_roworder_scans"\
- } /* analyzing_roworder_intersect */\
- } /* analyzing_range_alternatives */,\---逻辑优化,开始计算每个索引做范围扫描的花费. 这项工作结算
- "chosen_range_access_summary": {\---逻辑优化,开始计算每个索引做范围扫描的花费. 总结本阶段最优的.
- "range_access_plan": {\
- "type": "range_scan",\
- "index": "indx_ctime",\
- "rows": 688362,\
- "ranges": [\
- "1407081600 <= Fcreate_time <= 1407427199"\
- ] /* ranges */\
- } /* range_access_plan */,\
- "rows_for_plan": 688362,\
- "cost_for_plan": 564553,\
- "chosen": true\ -- 这里看到的cost和rows都比 indx_user 要来的小很多---这个和[A]处是一样的,是信息汇总.
- } /* chosen_range_access_summary */\
- } /* range_analysis */\
- }\
- ] /* rows_estimation */\ ---逻辑优化, 估算每个表的元组个数. 行估算结束
- },\
- {\
- "considered_execution_plans": [\ ---物理优化, 开始多表连接的物理优化计算
- {\
- "plan_prefix": [\
- ] /* plan_prefix */,\
- "table": "`t_audit_operate_log`",\
- "best_access_path": {\
- "considered_access_paths": [\
- {\
- "access_type": "ref",\ ---物理优化, 计算indx_user索引上使用ref方查找的花费,
- "index": "indx_user",\
- "rows": 1.95e6,\
- "cost": 683515,\
- "chosen": true\
- },\ ---物理优化, 本应该比较所有的可用索引,即打印出多个格式相同的但索引名不同的内容,这里却没有。推测是bug--没有遍历每一个索引.
- {\
- "access_type": "range",\---物理优化,猜测对应的是indx_time(没有实例可进行调试,对比5.7的跟踪信息猜测而得)
- "rows": 516272,\
- "cost": 702225,\---物理优化,代价大于了ref方式的683515,所以没有被选择
- "chosen": false\ -- cost比上面看到的增加了很多,但rows没什么变化 ---物理优化,此索引没有被选择
- }\
- ] /* considered_access_paths */\
- } /* best_access_path */,\
- "cost_for_plan": 683515,\ ---物理优化,汇总在best_access_path 阶段得到的结果
- "rows_for_plan": 1.95e6,\
- "chosen": true\ -- cost比上面看到的竟然小了很多?虽然rows没啥变化 ---物理优化,汇总在best_access_path 阶段得到的结果
- }\
- ] /* considered_execution_plans */\
- },\
- {\
- "attaching_conditions_to_tables": {\---逻辑优化,尽量把条件绑定到对应的表上
- } /* attaching_conditions_to_tables */\
- },\
- {\
- "refine_plan": [\
- {\
- "table": "`t_audit_operate_log`",\---逻辑优化,下推索引条件"pushed_index_condition";其他条件附加到表上做为过滤条件"table_condition_attached"
- }\
- ] /* refine_plan */\
- }\
- ] /* steps */\
- } /* join_optimization */\ \---逻辑优化和物理优化结束
- },\
- {\
- "join_explain": {} /* join_explain */\
- }\
- ] /* steps */\
三 其他一个相似问题
单表扫描,使用ref和range从索引获取数据一例
http://blog.163.com/li_hx/blog/static/183991413201461853637715/
四 问题的解决方式
遇到单表上有多个索引的时候,在MySQL5.6.20版本之前的版本,需要人工强制使用索引,以达到最好的效果.