检测结果如下
这个示例程序需要使用较大的内存,请保证内存足够。本程序运行速度比较慢,远不及OpenCV中的人脸检测。
注释中提到的几个文件下载地址如下
http://dlib.net/face_detection_ex.cpp.html
http://dlib.net/dnn_introduction_ex.cpp.html
http://dlib.net/dnn_introduction2_ex.cpp.html
http://dlib.net/dnn_mmod_ex.cpp.html
/*
这个示例程序展示如何使用Dlib来运行基于CNN的人脸检测。示例程序加载现有训练模型数据,并使用它在图像中查找人脸。CNN模型在运行时比基于HOG模型的检测要精确很多,然而,只有在GPU上执行才能达到较快的速度。例如,在NVIDIA Titan X GPU上,此程序与face_detection_ex.cpp处理图像的速度相同。
另外,刚刚学习dlib深度学习API的用户应该阅读dnn_introduction_ex.cpp和dnn_introduction2_ex.cpp示例,来了解API的工作原理。有关对象检测方法的介绍,您应该阅读dnn_mmod_ex.cpp
训练模型 TRAINING THE MODEL
最后,有兴趣对面部检测器进行训练的用户,可以阅读dnn_mmod_ex.cpp示例程序。
应该注意的是,本示例程序中使用的面部检测器比dnn_mmod_ex.cpp中展示的具有更
大的训练数据集和更大的CNN架构,但是其他训练条件是相同的。如果和dnn_mmod_ex.cpp
代码中的net_type比较,可以看到它们非常相似,只是增加了参数的数量。
另外,训练中以下训练参数有所不同:
dnn_mmod_ex.cpp中有以下更改
mmod_options options(face_boxes_train,40*40)
trainer.set_iterations_without_progress_threshold(300);
在以下示例中使用训练数据中使用参数为:
mmod_options options(face_boxes_train, 80*80);
trainer.set_iterations_without_progress_threshold(8000);
此外,random_cropper保持默认设置,所以我们没有调用以下函数:
cropper.set_chip_dims(200, 200);
cropper.set_min_object_height(0.2);
用于训练的数据也可在下面地址中找到
http://dlib.net/files/data/dlib_face_detection_dataset-2016-09-30.tar.gz
*/
#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
argc = 3;
char* v[] = {
"test",
"D:\\Picture\\mmod_human_face_detector.dat", /*这是下载的训练数据*/
"D:\\Picture\\222209_MIoI_1428332.jpg" /*用于检测的文件*/
};
argv = v;
if (argc == 1)
{
cout << "程序的使用,通过类似如下命令:" << endl;
cout << "./dnn_mmod_face_detection_ex mmod_human_face_detector.dat faces/*.jpg" << endl;
cout << "\n你可以从下面的地址获取 mmod_human_face_detector.dat 文件:\n";
cout << "http://dlib.net/files/mmod_human_face_detector.dat.bz2" << endl;
return 0;
}
net_type net;
deserialize(argv[1]) >> net; // 将训练数据传递给检测器
image_window win;
for (int i = 2; i < argc; ++i)
{
matrix<rgb_pixel> img;
load_image(img, argv[i]); // 加载图像
// 向上采样图像将使得我们能够检测较小的面孔,但会导致程序使用更多的内存,并运行时间更长。
while(img.size() < 512*512)
pyramid_up(img);
// 注意,您可以一次处理std::vector中的一堆图像,并且这样运行速度更快,
// 因为这将形成小批量的图像,从而利用GPU硬件,获得更好的并行性。
//但是,所有图像的大小必须相同。为了避免相同尺寸的这一要求,我们在这个例子中单独处理每一张图像。
auto dets = net(img); // 获取检测结果
win.clear_overlay(); // 清除已经绘制的
win.set_image(img); // 绘制图像
// 将检测结果绘制在窗口上
for (auto&& d : dets){
win.add_overlay(d);
}
// 按下enter键去处理下一个图像
cout << "Hit enter to process the next image." << endl;
cin.get();
}
return 0;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}