前面的一些例子中,我们都是利用Image.open()来打开一幅图像,然后直接对这个PIL对象进行操作。如果只是简单的操作还可以,但是如果操作稍微复杂一些,就比较吃力了。因此,通常我们加载完图片后,都是把图片转换成矩阵来进行更加复杂的操作。
python中利用numpy库和scipy库来进行各种数据操作和科学计算。我们可以通过pip来直接安装这两个库
1
2
|
pip install numpy
pip install scipy
|
以后,只要是在python中进行数字图像处理,我们都需要导入这些包:
1
2
3
|
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
|
打开图像并转化为矩阵,并显示:
1
2
3
4
5
6
7
8
|
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img = np.array(Image. open ( 'd:/lena.jpg' )) #打开图像并转化为数字矩阵
plt.figure( "dog" )
plt.imshow(img)
plt.axis( 'off' )
plt.show()
|
调用numpy中的array()函数就可以将PIL对象转换为数组对象。
查看图片信息,可用如下的方法:
1
2
3
4
|
print img.shape
print img.dtype
print img.size
print type (img)
|
如果是RGB图片,那么转换为array之后,就变成了一个rows*cols*channels的三维矩阵,因此,我们可以使用img[i,j,k]来访问像素值。
例1:打开图片,并随机添加一些椒盐噪声
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img = np.array(Image. open ( 'd:/ex.jpg' ))
#随机生成5000个椒盐
rows,cols,dims = img.shape
for i in range ( 5000 ):
x = np.random.randint( 0 ,rows)
y = np.random.randint( 0 ,cols)
img[x,y,:] = 255
plt.figure( "beauty" )
plt.imshow(img)
plt.axis( 'off' )
plt.show()
|
例2:将lena图像二值化,像素值大于128的变为1,否则变为0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
img = np.array(Image. open ( 'd:/pic/lena.jpg' ).convert( 'L' ))
rows,cols = img.shape
for i in range (rows):
for j in range (cols):
if (img[i,j]< = 128 ):
img[i,j] = 0
else :
img[i,j] = 1
plt.figure( "lena" )
plt.imshow(img,cmap = 'gray' )
plt.axis( 'off' )
plt.show()
|
如果要对多个像素点进行操作,可以使用数组切片方式访问。切片方式返回的是以指定间隔下标访问 该数组的像素值。下面是有关灰度图像的一些例子:
1
2
3
4
5
6
7
|
img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行
img[:,i] = 100 # 将第 i 列的所有数值设为 100
img[: 100 ,: 50 ]. sum () # 计算前 100 行、前 50 列所有数值的和
img[ 50 : 100 , 50 : 100 ] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)
img[i].mean() # 第 i 行所有数值的平均值
img[:, - 1 ] # 最后一列
img[ - 2 ,:] ( or im[ - 2 ]) # 倒数第二行
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://www.cnblogs.com/denny402/p/5096491.html