在最初学习PYTHON的时候,只知道有DOM和SAX两种解析方法,但是其效率都不够理想,由于需要处理的文件数量太大,这两种方式耗时太高无法接受。
在网络搜索后发现,目前应用比较广泛,且效率相对较高的ElementTree也是一个比较多人推荐的算法,于是拿这个算法来实测对比,ElementTree也包括两种实现,一个是普通ElementTree(ET),一个是ElementTree.iterparse(ET_iter)。
本文将对DOM、SAX、ET、ET_iter四种方式进行横向对比,通过处理相同文件比较各个算法的用时来评估其效率。
程序中将四种解析方法均写为函数,在主程序中分别调用,来评估其解析效率。
解压后的XML文件内容示例为:
主程序函数调用部分代码为:
1
2
3
4
5
6
7
|
print ( "文件计数:%d/%d." % (gz_cnt,paser_num))
str_s,cnt = dom_parser(gz)
#str_s,cnt = sax_parser(gz)
#str_s,cnt = ET_parser(gz)
#str_s,cnt = ET_parser_iter(gz)
output.write(str_s)
vs_cnt + = cnt
|
在最初的函数调用中函数返回两个值,但接收函数调用值时用两个变量分别调用,导致每个函数都要执行两次,之后修改为一次调用两个变量接收返回值,减少了无效调用。
1、DOM解析
函数定义代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
def dom_parser(gz):
import gzip,cStringIO
import xml.dom.minidom
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip. open (gz, 'rb' )
print ( "已读入:%s.\n解析中:" % (os.path.abspath(gz)))
doc = xml.dom.minidom.parseString(xm.read())
bulkPmMrDataFile = doc.documentElement
#读入子元素
enbs = bulkPmMrDataFile.getElementsByTagName( "eNB" )
measurements = enbs[ 0 ].getElementsByTagName( "measurement" )
objects = measurements[ 0 ].getElementsByTagName( "object" )
#写入csv文件
for object in objects:
vs = object .getElementsByTagName( "v" )
vs_cnt + = len (vs)
for v in vs:
file_io.write(enbs[ 0 ].getAttribute( "id" ) + ' ' + object .getAttribute( "id" ) + ' ' + \
object .getAttribute( "MmeUeS1apId" ) + ' ' + object .getAttribute( "MmeGroupId" ) + ' ' + object .getAttribute( "MmeCode" ) + ' ' + \
object .getAttribute( "TimeStamp" ) + ' ' + v.childNodes[ 0 ].data + '\n' ) #获取文本值
str_s = (((file_io.getvalue().replace( ' \n' , '\r\n' )).replace( ' ' , ',' )).replace( 'T' , ' ' )).replace( 'NIL' ,'')
xm.close()
file_io.close()
return (str_s,vs_cnt)
|
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
………………………………………
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:107.077867,每秒处理行数:1660。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
由于DOM解析需要将整个文件读入内存,并建立树结构,其内存消耗和时间消耗都比较高,但其优点在于逻辑简单,不需要定义回调函数,便于实现。
2、SAX解析
函数定义代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
def sax_parser(gz):
import os,gzip,cStringIO
from xml.parsers.expat import ParserCreate
#变量声明
d_eNB = {}
d_obj = {}
s = ''
global flag
flag = False
file_io = cStringIO.StringIO()
#Sax解析类
class DefaultSaxHandler( object ):
#处理开始标签
def start_element( self , name, attrs):
global d_eNB
global d_obj
global vs_cnt
if name = = 'eNB' :
d_eNB = attrs
elif name = = 'object' :
d_obj = attrs
elif name = = 'v' :
file_io.write(d_eNB[ 'id' ] + ' ' + d_obj[ 'id' ] + ' ' + d_obj[ 'MmeUeS1apId' ] + ' ' + d_obj[ 'MmeGroupId' ] + ' ' + d_obj[ 'MmeCode' ] + ' ' + d_obj[ 'TimeStamp' ] + ' ' )
vs_cnt + = 1
else :
pass
#处理中间文本
def char_data( self , text):
global d_eNB
global d_obj
global flag
if text[ 0 : 1 ].isnumeric():
file_io.write(text)
elif text[ 0 : 17 ] = = 'MR.LteScPlrULQci1' :
flag = True
#print(text,flag)
else :
pass
#处理结束标签
def end_element( self , name):
global d_eNB
global d_obj
if name = = 'v' :
file_io.write( '\n' )
else :
pass
#Sax解析调用
handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
vs_cnt = 0
str_s = ''
xm = gzip. open (gz, 'rb' )
print ( "已读入:%s.\n解析中:" % (os.path.abspath(gz)))
for line in xm.readlines():
parser.Parse(line) #解析xml文件内容
if flag:
break
str_s = file_io.getvalue().replace( ' \n' , '\r\n' ).replace( ' ' , ',' ).replace( 'T' , ' ' ).replace( 'NIL' ,'') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
|
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
.........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:14.386779,每秒处理行数:12361。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
SAX解析相比DOM解析,运行时间大幅缩短,由于SAX采用逐行解析,对于处理较大文件其占用内存也少,因此SAX解析是目前应用较多的一种解析方法。其缺点在于需要自己实现回调函数,逻辑较为复杂。
3、ET解析
函数定义代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
def ET_parser(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip. open (gz, 'rb' )
print ( "已读入:%s.\n解析中:" % (os.path.abspath(gz)))
tree = ET.ElementTree( file = xm)
root = tree.getroot()
for elem in root[ 1 ][ 0 ].findall( 'object' ):
for v in elem.findall( 'v' ):
file_io.write(root[ 1 ].attrib[ 'id' ] + ' ' + elem.attrib[ 'TimeStamp' ] + ' ' + elem.attrib[ 'MmeCode' ] + ' ' + \
elem.attrib[ 'id' ] + ' ' + elem.attrib[ 'MmeUeS1apId' ] + ' ' + elem.attrib[ 'MmeGroupId' ] + ' ' + v.text + '\n' )
vs_cnt + = 1
str_s = file_io.getvalue().replace( ' \n' , '\r\n' ).replace( ' ' , ',' ).replace( 'T' , ' ' ).replace( 'NIL' ,'') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
|
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...........................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:4.308103,每秒处理行数:41282。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
相较于SAX解析,ET解析时间更短,并且函数实现也比较简单,所以ET具有类似DOM的简单逻辑实现且匹敌SAX的解析效率,因此ET是目前XML解析的首选。
4、ET_iter解析
函数定义代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
def ET_parser_iter(gz):
import os,gzip,cStringIO
import xml.etree.cElementTree as ET
vs_cnt = 0
str_s = ''
file_io = cStringIO.StringIO()
xm = gzip. open (gz, 'rb' )
print ( "已读入:%s.\n解析中:" % (os.path.abspath(gz)))
d_eNB = {}
d_obj = {}
i = 0
for event,elem in ET.iterparse(xm,events = ( 'start' , 'end' )):
if i > = 2 :
break elif event = = 'start' :
if elem.tag = = 'eNB' :
d_eNB = elem.attrib
elif elem.tag = = 'object' :
d_obj = elem.attrib
elif event = = 'end' and elem.tag = = 'smr' :
i + = 1
elif event = = 'end' and elem.tag = = 'v' :
file_io.write(d_eNB[ 'id' ] + ' ' + d_obj[ 'TimeStamp' ] + ' ' + d_obj[ 'MmeCode' ] + ' ' + d_obj[ 'id' ] + ' ' + \
d_obj[ 'MmeUeS1apId' ] + ' ' + d_obj[ 'MmeGroupId' ] + ' ' + str (elem.text) + '\n' )
vs_cnt + = 1
elem.clear()
str_s = file_io.getvalue().replace( ' \n' , '\r\n' ).replace( ' ' , ',' ).replace( 'T' , ' ' ).replace( 'NIL' ,'') #写入解析后内容
xm.close()
file_io.close()
return (str_s,vs_cnt)
|
程序运行结果:
**************************************************
程序处理启动。
输入目录为:/tmcdata/mro2csv/input31/。
输出目录为:/tmcdata/mro2csv/output31/。
输入目录下.gz文件个数为:12,本次处理其中的12个。
**************************************************
文件计数:1/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_234598_20160224060000.xml.gz.
解析中:
文件计数:2/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_233798_20160224060000.xml.gz.
解析中:
文件计数:3/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_123798_20160224060000.xml.gz.
解析中:
...................................................
文件计数:12/12.
已读入:/tmcdata/mro2csv/input31/TD-LTE_MRO_NSN_OMC_235598_20160224060000.xml.gz.
解析中:
VS行计数:177849,运行时间:3.043805,每秒处理行数:58429。
已写入:/tmcdata/mro2csv/output31/mro_0001.csv。
**************************************************
程序处理结束。
在引入了ET_iter解析后,解析效率比ET提升了近50%,而相较于DOM解析更是提升了35倍,在解析效率提升的同时,由于其采用了iterparse这个循序解析的工具,其内存占用也是比较小的。
所以,小伙伴们,请好好利用这几种工具吧。
以上就是本文的全部内容,希望对大家的学习有所帮助。