使用python进行图片处理,现在需要读出图片的任意一块区域,并将其转化为一维数组,方便后续卷积操作的使用。
下面使用两种方法进行处理:
convert 函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
from pil import image
import numpy as np
import matplotlib.pyplot as plt
def imagetomatrix(filename):
im.show() # 显示图片
width,height = im.size
print ( "width is :" + str (width))
print ( "height is :" + str (height))
im = im.convert( "l" ) # pic --> mat 转换,可以选择不同的模式,下面有函数源码具体说明
data = im.getdata()
data = np.matrix(data,dtype = 'float' ) / 255.0
new_data = np.reshape(data * 255.0 ,(height,width))
new_im = image.fromarray(new_data)
# 显示从矩阵数据得到的图片
new_im.show()
return new_data
def matrixtoimage(data):
data = data * 255
new_im = image.fromarray(data.astype(np.uint8))
return new_im
'''
convert(self, mode=none, matrix=none, dither=none, palette=0, colors=256)
| returns a converted copy of this image. for the "p" mode, this
| method translates pixels through the palette. if mode is
| omitted, a mode is chosen so that all information in the image
| and the palette can be represented without a palette.
|
| the current version supports all possible conversions between
| "l", "rgb" and "cmyk." the **matrix** argument only supports "l"
| and "rgb".
|
| when translating a color image to black and white (mode "l"),
| the library uses the itu-r 601-2 luma transform::
|
| l = r * 299/1000 + g * 587/1000 + b * 114/1000
|
| the default method of converting a greyscale ("l") or "rgb"
| image into a bilevel (mode "1") image uses floyd-steinberg
| dither to approximate the original image luminosity levels. if
| dither is none, all non-zero values are set to 255 (white). to
| use other thresholds, use the :py:meth:`~pil.image.image.point`
| method.
|
| :param mode: the requested mode. see: :ref:`concept-modes`.
| :param matrix: an optional conversion matrix. if given, this
| should be 4- or 12-tuple containing floating point values.
| :param dither: dithering method, used when converting from
| mode "rgb" to "p" or from "rgb" or "l" to "1".
| available methods are none or floydsteinberg (default).
| :param palette: palette to use when converting from mode "rgb"
| to "p". available palettes are web or adaptive.
| :param colors: number of colors to use for the adaptive palette.
| defaults to 256.
| :rtype: :py:class:`~pil.image.image`
| :returns: an :py:class:`~pil.image.image` object.
'''
|
原图:
1
2
3
4
5
6
7
8
9
|
filepath = "./imgs/"
imgdata = imagetomatrix( "./imgs/0001.jpg" )
print ( type (imgdata))
print (imgdata.shape)
plt.imshow(imgdata) # 显示图片
plt.axis( 'off' ) # 不显示坐标轴
plt.show()
|
运行结果:
mpimg 函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
def readpic(picname, filename):
img = mpimg.imread(picname)
# 此时 img 就已经是一个 np.array 了,可以对它进行任意处理
weight,height,n = img.shape #(512, 512, 3)
print ( "the original pic: \n" + str (img))
plt.imshow(img) # 显示图片
plt.axis( 'off' ) # 不显示坐标轴
plt.show()
# 取reshape后的矩阵的第一维度数据,即所需要的数据列表
img_reshape = img.reshape( 1 ,weight * height * n)[ 0 ]
print ( "the 1-d image data :\n " + str (img_reshape))
# 截取(300,300)区域的一小块(12*12*3),将该区域的图像数据转换为一维数组
img_cov = np.random.randint( 1 , 2 ,( 12 , 12 , 3 )) # 这里使用np.ones()初始化数组,会出现数组元素为float类型,使用np.random.randint确保其为int型
for j in range ( 12 ):
for i in range ( 12 ):
img_cov[i][j] = img[ 300 + i][ 300 + j]
img_reshape = img_cov.reshape( 1 , 12 * 12 * 3 )[ 0 ]
print ((img_cov))
print (img_reshape)
# 打印该12*12*3区域的图像
plt.imshow(img_cov)
plt.axis( 'off' )
plt.show()
# 写文件
# open:以append方式打开文件,如果没找到对应的文件,则创建该名称的文件
with open (filename, 'a' ) as f:
f.write( str (img_reshape))
return img_reshape
if __name__ = = '__main__' :
picname = './imgs/0001.jpg'
readpic(picname, "data.py" )
|
读出的数据(12*12*3),每个像素点以r、g、b的顺序排列,以及该区域显示为图片的效果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/sinat_34022298/article/details/79533934