Ruby实现的矩阵连乘算法

时间:2022-11-25 00:19:15

动态规划解决矩阵连乘问题,随机产生矩阵序列,输出形如((A1(A2A3))(A4A5))的结果。

代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#encoding: utf-8
=begin
author: xu jin, 4100213
date: Oct 28, 2012
MatrixChain
to find an optimum order by using MatrixChain algorithm
example output:
The given array is:[30, 35, 15, 5, 10, 20, 25]
The optimum order is:((A1(A2A3))((A4A5)A6))
The total number of multiplications is: 15125
 
The random array is:[5, 8, 8, 2, 5, 9]
The optimum order is:((A1(A2A3))(A4A5))
The total number of multiplications is: 388
=end
 
INFINTIY = 1 / 0.0
p = [30, 35, 15, 5, 10, 20, 25]
m, s = Array.new(p.size){Array.new(p.size)}, Array.new(p.size){Array.new(p.size)}
 
def matrix_chain_order(p, m, s)
   n = p.size - 1
   (1..n).each{|i| m[i][i] = 0}
   for r in (2..n) do
     for i in (1..n - r + 1) do
       j = r + i - 1
       m[i][j] = INFINTIY
       for k in (i...j) do
         q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]                 
         m[i][j], s[i][j] = q, k if(q < m[i][j])
       end
     end
   end
end
 
def print_optimal_parens(s, i, j)
   if(i == j) then
    print "A" + i.to_s
   else
    print "("
    print_optimal_parens(s, i, s[i][j])
    print_optimal_parens(s, s[i][j] + 1, j)
    print ")"
   end
end
 
def process(p, m, s)
   matrix_chain_order(p, m, s)
   print "The optimum order is:"
   print_optimal_parens(s, 1, p.size - 1)
   printf("\nThe total number of multiplications is: %d\n\n", m[1][p.size - 1])
end
 
puts "The given array is:" + p.to_s
process(p, m, s)
 
#produce a random array
p = Array.new
x = rand(10)
(0..x).each{|index| p[index] = rand(10) + 1}
puts "The random array is:" + p.to_s
m, s = Array.new(p.size){Array.new(p.size)}, Array.new(p.size){Array.new(p.size)}
process(p, m, s)