这道题用线段树做更方便更新和查询,但是其数据范围很大,因此要将离散化和线段树结合起来,算是一道比较经典的线段树+离散化的例题。
线段树的离散化有很多方法,在这里,我先用一次结点离散化,间接将源左右端点离散化的想法实现。(受到一个博客的启发)
题意:贴海报-给出海报左右端点,然后顺序贴上,问最后有多少海报可见。
直接贴上Code,具体解释在注释中有提及(有不懂的地方可以在纸上打个线段树草稿试试):
//贴海报-给出海报左右端点,顺序贴上,问最后有多少海报可见。
//Time:79Ms Memory:2712K
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std; #define MAX 10005 struct Node {
int l, r, kind;
}tr[16*MAX]; //两端点加空点需要8-16*MAX数据量 struct Pos {
int num, id;
friend bool operator < (Pos p1, Pos p2) { return p1.num < p2.num; }
}pos[2*MAX]; int n, cnt;
int l[MAX], r[MAX];
bool v[MAX]; void build(int x,int l,int r)
{
tr[x].l = l; tr[x].r = r;
if (l == r) return;
int mid = (l + r) / 2;
build(2 * x, l, mid);
build(2 * x + 1, mid + 1, r);
} void update(int x,int l,int r,int k)
{
if (tr[x].l == l && tr[x].r == r) {
tr[x].kind = k;
return;
}
if (tr[x].kind) {
tr[2 * x].kind = tr[x].kind;
tr[2 * x + 1].kind = tr[x].kind;
tr[x].kind = 0;
}
int mid = (tr[x].l + tr[x].r) / 2;
if (r <= mid) update(2 * x, l, r, k);
else if (l > mid) update(2 * x + 1, l, r, k);
else {
update(2 * x, l, mid, k);
update(2 * x + 1, mid + 1, r, k);
}
} int query(int x,int l,int r)
{
if (tr[x].kind) {
if (v[tr[x].kind]) return 0;
else { v[tr[x].kind] = true; return 1;}
}
if (tr[x].l == tr[x].r) return 0; //由于有空点,可能会有tr[x].kind = 0
int mid = (tr[x].l + tr[x].r) / 2;
return query(2 * x, l, mid) + query(2 * x + 1, mid + 1, r);
} int main()
{
int T;
scanf("%d", &T);
while (T--) {
memset(tr, 0, sizeof(tr));
memset(v, 0, sizeof(v));
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
scanf("%d%d", &l[i], &r[i]);
pos[2 * i].num = l[i];
pos[2 * i + 1].num = r[i];
pos[2 * i].id = 2 * i; //偶数-左端点
pos[2 * i + 1].id = 2 * i + 1; //奇数-右端点
}
int last = pos[0].num;
cnt = 1;
sort(pos, pos + 2 * n);
for (int i = 0; i < 2 * n; i++)
{
if (last != pos[i].num) {
if (pos[i].num - last > 1)
cnt++; //不相邻时,中间空一点
cnt++;
last = pos[i].num;
}
int id = pos[i].id; //分别对左右端点离散化
id % 2 ? r[id/2] = cnt : l[id/2] = cnt;
}
build(1, 1, cnt);
for (int i = 0; i < n; i++)
update(1, l[i], r[i], i + 1);
printf("%d\n", query(1, 1, cnt));
} return 0;
}