最近刚入门caffe,跟着视频做了一个简单人脸检测。包括人脸二分类模型+方框框出人脸。
人脸二分类模型
1. 收集数据
我用的是lfw数据集,总共有13233张人脸图片。非人脸数据有两种选择。1. 用完全不是人脸的图片;2. 用与人脸重叠比例较小的图片。我用的是动物的图片作为负样本。负样本数据集。
2. 制作LMDB数据源(caffe非常支持的常用于分类的数据源)
首先需要写两个txt文档。train.txt 和 val.txt
主要保存的是图片的路径、名称、label。
形如:train.txt
0/xxx.jpg 0
1/xxx.jpg 1
val.txt
0/xxx.jpg 0
1/xxx.jpg 1
其中0文件夹表示正样本(人脸)、1文件夹表示负样本(非人脸)
如果是多分类,文件夹名称也是从0开始
生成txt文本的python代码(linux和Windows下的代码有点不同):
linux版。jupyter notebook作为编译器
import os
#定义Caffe根目录
caffe_root = '/home/z/work/face_detect/' # 制作训练标签数据
i = 0 # 标签
with open(caffe_root + 'train.txt', 'w') as train_txt:
for root, dirs, files in os.walk(caffe_root + 'train/'): # 遍历文件夹
for dir in dirs:
for root, dirs, files in os.walk(caffe_root + 'train/' + str(dir)): # 遍历每一个文件夹中的文件
for file in files:
image_file = str(dir) + '/' + str(file)
label = image_file + ' ' + str(i) + '\n' # 文件路径+空格+标签编号+换行
train_txt.writelines(label) # 写入标签文件中
i += 1 # 编号加1 # 制作测试标签数据
i = 0 # 标签
with open(caffe_root + 'val.txt', 'w') as val_txt:
for root, dirs, files in os.walk(caffe_root + 'val/'): # 遍历文件夹
for dir in dirs:
for root, dirs, files in os.walk(caffe_root + 'val/' + str(dir)): # 遍历每一个文件夹中的文件
for file in files:
image_file = str(dir) + '/' + str(file)
label = image_file + ' ' + str(i) + '\n' # 文件路径+空格+标签编号+换行
val_txt.writelines(label) # 写入标签文件中
i += 1 # 编号加1
print('成功生成文件列表')
两个txt文件创建后,使用caffe提供create_imagenet.sh。当然需要修改。前几行改成自己的安装目录。还要进行一个resize操作,比如ALEXNET或者VGG通常都是给它resize 227*227. 我的文件是face_lmdb.sh
EXAMPLE=/home/z/work/face_detect
DATA=/home/z/work/face_detect
TOOLS=/home/z/caffe/build/tools TRAIN_DATA_ROOT=/home/z/work/face_detect/train/
VAL_DATA_ROOT=/home/z/work/face_detect/val/ # Set RESIZE=true to resize the images to 256x256. Leave as false if images have
# already been resized using another tool.
RESIZE=true
if $RESIZE; then
RESIZE_HEIGHT=227
RESIZE_WIDTH=227
else
RESIZE_HEIGHT=0
RESIZE_WIDTH=0
fi if [ ! -d "$TRAIN_DATA_ROOT" ]; then
echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT"
echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet training data is stored."
exit 1
fi if [ ! -d "$VAL_DATA_ROOT" ]; then
echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT"
echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \
"where the ImageNet validation data is stored."
exit 1
fi echo "Creating train lmdb..." GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$TRAIN_DATA_ROOT \
$DATA/train.txt \
$EXAMPLE/face_train_lmdb echo "Creating val lmdb..." GLOG_logtostderr=1 $TOOLS/convert_imageset \
--resize_height=$RESIZE_HEIGHT \
--resize_width=$RESIZE_WIDTH \
--shuffle \
$VAL_DATA_ROOT \
$DATA/val.txt \
$EXAMPLE/face_val_lmdb echo "Done."
命令行输入:sh LMDB脚本文件。
3. 训练模型
使用的是AlEXNET,当然用其他的网络也可以,比如VGG。主要是电脑配置比较差,使用cpu跑的,人脸数据集也没有全部使用。
只是为了跑通上述流程。我的训练集使用了1000张人脸,1000张非人脸。测试集使用600张人脸,600张非人脸。生成的LMDB数据源。
1. 网络模型文件train_val.prototxt.
要改的地方不多。数据来源、batch_size、最后全连接层的num_output该为2(2分类)
name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
#mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "/home/z/work/face_detect/face_train_lmdb"
batch_size: 16
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
#mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
data_param {
source: "/home/z/work/face_detect/face_val_lmdb"
batch_size: 16
backend: LMDB
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
2. 参数配置文件solver.prototxt
net: "/home/z/work/face_detect/train_val.prototxt"
test_iter: 20
test_interval: 1000
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 2000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 1000
snapshot_prefix: "/home/z/work/face_detect/model"
solver_mode: CPU
3. 训练脚本train.sh
#!/usr/bin/env sh
/home/z/caffe/build/tools/caffe train --solver=/home/z/work/face_detect/solver.prototxt