java 管道介绍
在java中,PipedOutputStream和PipedInputStream分别是管道输出流和管道输入流。
它们的作用是让多线程可以通过管道进行线程间的通讯。在使用管道通信时,必须将PipedOutputStream和PipedInputStream配套使用。
使用管道通信时,大致的流程是:我们在线程A中向PipedOutputStream中写入数据,这些数据会自动的发送到与PipedOutputStream对应的PipedInputStream中,进而存储在PipedInputStream的缓冲中;此时,线程B通过读取PipedInputStream中的数据。就可以实现,线程A和线程B的通信。
PipedOutputStream和PipedInputStream源码分析
下面介绍PipedOutputStream和PipedInputStream的源码。在阅读它们的源码之前,建议先看看源码后面的示例。待理解管道的作用和用法之后,再看源码,可能更容易理解。
1. PipedOutputStream 源码分析(基于jdk1.7.40)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
package java.io;
import java.io.*;
public class PipedOutputStream extends OutputStream {
// 与PipedOutputStream通信的PipedInputStream对象
private PipedInputStream sink;
// 构造函数,指定配对的PipedInputStream
public PipedOutputStream(PipedInputStream snk) throws IOException {
connect(snk);
}
// 构造函数
public PipedOutputStream() {
}
// 将“管道输出流” 和 “管道输入流”连接。
public synchronized void connect(PipedInputStream snk) throws IOException {
if (snk == null ) {
throw new NullPointerException();
} else if (sink != null || snk.connected) {
throw new IOException( "Already connected" );
}
// 设置“管道输入流”
sink = snk;
// 初始化“管道输入流”的读写位置
// int是PipedInputStream中定义的,代表“管道输入流”的读写位置
snk.in = - 1 ;
// 初始化“管道输出流”的读写位置。
// out是PipedInputStream中定义的,代表“管道输出流”的读写位置
snk.out = 0 ;
// 设置“管道输入流”和“管道输出流”为已连接状态
// connected是PipedInputStream中定义的,用于表示“管道输入流与管道输出流”是否已经连接
snk.connected = true ;
}
// 将int类型b写入“管道输出流”中。
// 将b写入“管道输出流”之后,它会将b传输给“管道输入流”
public void write( int b) throws IOException {
if (sink == null ) {
throw new IOException( "Pipe not connected" );
}
sink.receive(b);
}
// 将字节数组b写入“管道输出流”中。
// 将数组b写入“管道输出流”之后,它会将其传输给“管道输入流”
public void write( byte b[], int off, int len) throws IOException {
if (sink == null ) {
throw new IOException( "Pipe not connected" );
} else if (b == null ) {
throw new NullPointerException();
} else if ((off < 0 ) || (off > b.length) || (len < 0 ) ||
((off + len) > b.length) || ((off + len) < 0 )) {
throw new IndexOutOfBoundsException();
} else if (len == 0 ) {
return ;
}
// “管道输入流”接收数据
sink.receive(b, off, len);
}
// 清空“管道输出流”。
// 这里会调用“管道输入流”的notifyAll();
// 目的是让“管道输入流”放弃对当前资源的占有,让其它的等待线程(等待读取管道输出流的线程)读取“管道输出流”的值。
public synchronized void flush() throws IOException {
if (sink != null ) {
synchronized (sink) {
sink.notifyAll();
}
}
}
// 关闭“管道输出流”。
// 关闭之后,会调用receivedLast()通知“管道输入流”它已经关闭。
public void close() throws IOException {
if (sink != null ) {
sink.receivedLast();
}
}
}
|
2. PipedInputStream 源码分析(基于jdk1.7.40)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
package java.io;
public class PipedInputStream extends InputStream {
// “管道输出流”是否关闭的标记
boolean closedByWriter = false ;
// “管道输入流”是否关闭的标记
volatile boolean closedByReader = false ;
// “管道输入流”与“管道输出流”是否连接的标记
// 它在PipedOutputStream的connect()连接函数中被设置为true
boolean connected = false ;
Thread readSide; // 读取“管道”数据的线程
Thread writeSide; // 向“管道”写入数据的线程
// “管道”的默认大小
private static final int DEFAULT_PIPE_SIZE = 1024 ;
protected static final int PIPE_SIZE = DEFAULT_PIPE_SIZE;
// 缓冲区
protected byte buffer[];
//下一个写入字节的位置。in==out代表满,说明“写入的数据”全部被读取了。
protected int in = - 1 ;
//下一个读取字节的位置。in==out代表满,说明“写入的数据”全部被读取了。
protected int out = 0 ;
// 构造函数:指定与“管道输入流”关联的“管道输出流”
public PipedInputStream(PipedOutputStream src) throws IOException {
this (src, DEFAULT_PIPE_SIZE);
}
// 构造函数:指定与“管道输入流”关联的“管道输出流”,以及“缓冲区大小”
public PipedInputStream(PipedOutputStream src, int pipeSize)
throws IOException {
initPipe(pipeSize);
connect(src);
}
// 构造函数:默认缓冲区大小是1024字节
public PipedInputStream() {
initPipe(DEFAULT_PIPE_SIZE);
}
// 构造函数:指定缓冲区大小是pipeSize
public PipedInputStream( int pipeSize) {
initPipe(pipeSize);
}
// 初始化“管道”:新建缓冲区大小
private void initPipe( int pipeSize) {
if (pipeSize <= 0 ) {
throw new IllegalArgumentException( "Pipe Size <= 0" );
}
buffer = new byte [pipeSize];
}
// 将“管道输入流”和“管道输出流”绑定。
// 实际上,这里调用的是PipedOutputStream的connect()函数
public void connect(PipedOutputStream src) throws IOException {
src.connect( this );
}
// 接收int类型的数据b。
// 它只会在PipedOutputStream的write(int b)中会被调用
protected synchronized void receive( int b) throws IOException {
// 检查管道状态
checkStateForReceive();
// 获取“写入管道”的线程
writeSide = Thread.currentThread();
// 若“写入管道”的数据正好全部被读取完,则等待。
if (in == out)
awaitSpace();
if (in < 0 ) {
in = 0 ;
out = 0 ;
}
// 将b保存到缓冲区
buffer[in++] = ( byte )(b & 0xFF );
if (in >= buffer.length) {
in = 0 ;
}
}
// 接收字节数组b。
synchronized void receive( byte b[], int off, int len) throws IOException {
// 检查管道状态
checkStateForReceive();
// 获取“写入管道”的线程
writeSide = Thread.currentThread();
int bytesToTransfer = len;
while (bytesToTransfer > 0 ) {
// 若“写入管道”的数据正好全部被读取完,则等待。
if (in == out)
awaitSpace();
int nextTransferAmount = 0 ;
// 如果“管道中被读取的数据,少于写入管道的数据”;
// 则设置nextTransferAmount=“buffer.length - in”
if (out < in) {
nextTransferAmount = buffer.length - in;
} else if (in < out) { // 如果“管道中被读取的数据,大于/等于写入管道的数据”,则执行后面的操作
// 若in==-1(即管道的写入数据等于被读取数据),此时nextTransferAmount = buffer.length - in;
// 否则,nextTransferAmount = out - in;
if (in == - 1 ) {
in = out = 0 ;
nextTransferAmount = buffer.length - in;
} else {
nextTransferAmount = out - in;
}
}
if (nextTransferAmount > bytesToTransfer)
nextTransferAmount = bytesToTransfer;
// assert断言的作用是,若nextTransferAmount <= 0,则终止程序。
assert (nextTransferAmount > 0 );
// 将数据写入到缓冲中
System.arraycopy(b, off, buffer, in, nextTransferAmount);
bytesToTransfer -= nextTransferAmount;
off += nextTransferAmount;
in += nextTransferAmount;
if (in >= buffer.length) {
in = 0 ;
}
}
}
// 检查管道状态
private void checkStateForReceive() throws IOException {
if (!connected) {
throw new IOException( "Pipe not connected" );
} else if (closedByWriter || closedByReader) {
throw new IOException( "Pipe closed" );
} else if (readSide != null && !readSide.isAlive()) {
throw new IOException( "Read end dead" );
}
}
// 等待。
// 若“写入管道”的数据正好全部被读取完(例如,管道缓冲满),则执行awaitSpace()操作;
// 它的目的是让“读取管道的线程”管道产生读取数据请求,从而才能继续的向“管道”中写入数据。
private void awaitSpace() throws IOException {
// 如果“管道中被读取的数据,等于写入管道的数据”时,
// 则每隔1000ms检查“管道状态”,并唤醒管道操作:若有“读取管道数据线程被阻塞”,则唤醒该线程。
while (in == out) {
checkStateForReceive();
/* full: kick any waiting readers */
notifyAll();
try {
wait(1000);
} catch (InterruptedException ex) {
throw new java.io.InterruptedIOException();
}
}
}
// 当PipedOutputStream被关闭时,被调用
synchronized void receivedLast() {
closedByWriter = true;
notifyAll();
}
// 从管道(的缓冲)中读取一个字节,并将其转换成int类型
public synchronized int read() throws IOException {
if (!connected) {
throw new IOException("Pipe not connected");
} else if (closedByReader) {
throw new IOException("Pipe closed");
} else if (writeSide != null && !writeSide.isAlive()
&& !closedByWriter && (in < 0)) {
throw new IOException("Write end dead");
}
readSide = Thread.currentThread();
int trials = 2;
while (in < 0) {
if (closedByWriter) {
/* closed by writer, return EOF */
return -1;
}
if ((writeSide != null) && (!writeSide.isAlive()) && (--trials < 0)) {
throw new IOException("Pipe broken");
}
/* might be a writer waiting */
notifyAll();
try {
wait(1000);
} catch (InterruptedException ex) {
throw new java.io.InterruptedIOException();
}
}
int ret = buffer[out++] & 0xFF;
if (out >= buffer.length) {
out = 0;
}
if (in == out) {
/* now empty */
in = -1;
}
return ret;
}
// 从管道(的缓冲)中读取数据,并将其存入到数组b中
public synchronized int read(byte b[], int off, int len) throws IOException {
if (b == null) {
throw new NullPointerException();
} else if (off < 0 || len < 0 || len > b.length - off) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return 0;
}
/* possibly wait on the first character */
int c = read();
if (c < 0) {
return -1;
}
b[off] = (byte) c;
int rlen = 1;
while ((in >= 0) && (len > 1)) {
int available;
if (in > out) {
available = Math.min((buffer.length - out), (in - out));
} else {
available = buffer.length - out;
}
// A byte is read beforehand outside the loop
if (available > (len - 1)) {
available = len - 1;
}
System.arraycopy(buffer, out, b, off + rlen, available);
out += available;
rlen += available;
len -= available;
if (out >= buffer.length) {
out = 0;
}
if (in == out) {
/* now empty */
in = - 1 ;
}
}
return rlen;
}
// 返回不受阻塞地从此输入流中读取的字节数。
public synchronized int available() throws IOException {
if (in < 0 )
return 0 ;
else if (in == out)
return buffer.length;
else if (in > out)
return in - out;
else
return in + buffer.length - out;
}
// 关闭管道输入流
public void close() throws IOException {
closedByReader = true ;
synchronized ( this ) {
in = - 1 ;
}
}
}
|
管道通信示例
下面,我们看看多线程中通过管道通信的例子。例子中包括3个类:Receiver.java, PipedStreamTest.java 和 Sender.java。
Receiver.java的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
import java.io.IOException;
import java.io.PipedInputStream;
@SuppressWarnings ( "all" )
/**
* 接收者线程
*/
public class Receiver extends Thread {
// 管道输入流对象。
// 它和“管道输出流(PipedOutputStream)”对象绑定,
// 从而可以接收“管道输出流”的数据,再让用户读取。
private PipedInputStream in = new PipedInputStream();
// 获得“管道输入流”对象
public PipedInputStream getInputStream(){
return in;
}
@Override
public void run(){
readMessageOnce() ;
//readMessageContinued() ;
}
// 从“管道输入流”中读取1次数据
public void readMessageOnce(){
// 虽然buf的大小是2048个字节,但最多只会从“管道输入流”中读取1024个字节。
// 因为,“管道输入流”的缓冲区大小默认只有1024个字节。
byte [] buf = new byte [ 2048 ];
try {
int len = in.read(buf);
System.out.println( new String(buf, 0 ,len));
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
// 从“管道输入流”读取>1024个字节时,就停止读取
public void readMessageContinued() {
int total= 0 ;
while ( true ) {
byte [] buf = new byte [ 1024 ];
try {
int len = in.read(buf);
total += len;
System.out.println( new String(buf, 0 ,len));
// 若读取的字节总数>1024,则退出循环。
if (total > 1024 )
break ;
} catch (IOException e) {
e.printStackTrace();
}
}
try {
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
|
Sender.java的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
import java.io.IOException;
import java.io.PipedOutputStream;
@SuppressWarnings ( "all" )
/**
* 发送者线程
*/
public class Sender extends Thread {
// 管道输出流对象。
// 它和“管道输入流(PipedInputStream)”对象绑定,
// 从而可以将数据发送给“管道输入流”的数据,然后用户可以从“管道输入流”读取数据。
private PipedOutputStream out = new PipedOutputStream();
// 获得“管道输出流”对象
public PipedOutputStream getOutputStream(){
return out;
}
@Override
public void run(){
writeShortMessage();
//writeLongMessage();
}
// 向“管道输出流”中写入一则较简短的消息:"this is a short message"
private void writeShortMessage() {
String strInfo = "this is a short message" ;
try {
out.write(strInfo.getBytes());
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
// 向“管道输出流”中写入一则较长的消息
private void writeLongMessage() {
StringBuilder sb = new StringBuilder();
// 通过for循环写入1020个字节
for ( int i= 0 ; i< 102 ; i++)
sb.append( "0123456789" );
// 再写入26个字节。
sb.append( "abcdefghijklmnopqrstuvwxyz" );
// str的总长度是1020+26=1046个字节
String str = sb.toString();
try {
// 将1046个字节写入到“管道输出流”中
out.write(str.getBytes());
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
|
PipedStreamTest.java的代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import java.io.PipedInputStream;
import java.io.PipedOutputStream;
import java.io.IOException;
@SuppressWarnings ( "all" )
/**
* 管道输入流和管道输出流的交互程序
*/
public class PipedStreamTest {
public static void main(String[] args) {
Sender t1 = new Sender();
Receiver t2 = new Receiver();
PipedOutputStream out = t1.getOutputStream();
PipedInputStream in = t2.getInputStream();
try {
//管道连接。下面2句话的本质是一样。
//out.connect(in);
in.connect(out);
/**
* Thread类的START方法:
* 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。
* 结果是两个线程并发地运行;当前线程(从调用返回给 start 方法)和另一个线程(执行其 run 方法)。
* 多次启动一个线程是非法的。特别是当线程已经结束执行后,不能再重新启动。
*/
t1.start();
t2.start();
} catch (IOException e) {
e.printStackTrace();
}
}
}
|
运行结果:
this is a short message
说明:
(01)
in.connect(out);
将“管道输入流”和“管道输出流”关联起来。查看PipedOutputStream.java和PipedInputStream.java中connect()的源码;我们知道 out.connect(in); 等价于 in.connect(out);
(02)
t1.start(); // 启动“Sender”线程
t2.start(); // 启动“Receiver”线程
先查看Sender.java的源码,线程启动后执行run()函数;在Sender.java的run()中,调用writeShortMessage();
writeShortMessage();的作用就是向“管道输出流”中写入数据"this is a short message" ;这条数据会被“管道输入流”接收到。下面看看这是如何实现的。
先看write(byte b[])的源码,在OutputStream.java中定义。PipedOutputStream.java继承于OutputStream.java;OutputStream.java中write(byte b[])的源码如下:
1
2
3
|
public void write( byte b[]) throws IOException {
write(b, 0 , b.length);
}
|
实际上write(byte b[])是调用的PipedOutputStream.java中的write(byte b[], int off, int len)函数。查看write(byte b[], int off, int len)的源码,我们发现:它会调用 sink.receive(b, off, len); 进一步查看receive(byte b[], int off, int len)的定义,我们知道sink.receive(b, off, len)的作用就是:将“管道输出流”中的数据保存到“管道输入流”的缓冲中。而“管道输入流”的缓冲区buffer的默认大小是1024个字节。
至此,我们知道:t1.start()启动Sender线程,而Sender线程会将数据"this is a short message"写入到“管道输出流”;而“管道输出流”又会将该数据传输给“管道输入流”,即而保存在“管道输入流”的缓冲中。
接下来,我们看看“用户如何从‘管道输入流'的缓冲中读取数据”。这实际上就是Receiver线程的动作。
t2.start() 会启动Receiver线程,从而执行Receiver.java的run()函数。查看Receiver.java的源码,我们知道run()调用了readMessageOnce()。
而readMessageOnce()就是调用in.read(buf)从“管道输入流in”中读取数据,并保存到buf中。
通过上面的分析,我们已经知道“管道输入流in”的缓冲中的数据是"this is a short message";因此,buf的数据就是"this is a short message"。
为了加深对管道的理解。我们接着进行下面两个小试验。
试验一:修改Sender.java
将
1
2
3
4
|
public void run(){
writeShortMessage();
//writeLongMessage();
}
|
修改为
1
2
3
4
|
public void run(){
//writeShortMessage();
writeLongMessage();
}
|
运行程序。运行结果为:
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
012345678901234567890123456789abcd
这些数据是通过writeLongMessage()写入到“管道输出流”,然后传送给“管道输入流”,进而存储在“管道输入流”的缓冲中;再被用户从缓冲读取出来的数据。
然后,观察writeLongMessage()的源码。我们可以发现,str的长度是1046个字节,然后运行结果只有1024个字节!为什么会这样呢?
道理很简单:管道输入流的缓冲区默认大小是1024个字节。所以,最多只能写入1024个字节。
观察PipedInputStream.java的源码,我们能了解的更透彻。
1
2
3
4
|
private static final int DEFAULT_PIPE_SIZE = 1024 ;
public PipedInputStream() {
initPipe(DEFAULT_PIPE_SIZE);
}
|
默认构造函数调用initPipe(DEFAULT_PIPE_SIZE),它的源码如下:
1
2
3
4
5
6
|
private void initPipe( int pipeSize) {
if (pipeSize <= 0 ) {
throw new IllegalArgumentException( "Pipe Size <= 0" );
}
buffer = new byte [pipeSize];
}
|
从中,我们可以知道缓冲区buffer的默认大小就是1024个字节。
试验二: 在“试验一”的基础上继续修改Receiver.java
将
1
2
3
4
|
public void run(){
readMessageOnce() ;
//readMessageContinued() ;
}
|
修改为
1
2
3
4
|
public void run(){
//readMessageOnce() ;
readMessageContinued() ;
}
|
运行程序。运行结果为:
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
01234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
012345678901234567890123456789abcd
efghijklmnopqrstuvwxyz
这个结果才是writeLongMessage()写入到“输入缓冲区”的完整数据。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。