theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方
代码块
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
import numpy as np
import theano.tensor as T
import theano
import time
class Linear_Reg( object ):
def __init__( self ,x):
self .a = theano.shared(value = np.zeros(( 1 ,), dtype = theano.config.floatX),name = 'a' )
self .b = theano.shared(value = np.zeros(( 1 ,),
dtype = theano.config.floatX),name = 'b' )
self .result = self .a * x + self .b
self .params = [ self .a, self .b]
def msl( self ,y):
return T.mean((y - self .result) * * 2 )
def regrun(rate,data,labels):
X = theano.shared(np.asarray(data,
dtype = theano.config.floatX),borrow = True )
Y = theano.shared(np.asarray(labels,
dtype = theano.config.floatX),borrow = True )
index = T.lscalar() #定义符号化的公式
x = T.dscalar( 'x' ) #定义符号化的公式
y = T.dscalar( 'y' ) #定义符号化的公式
reg = Linear_Reg(x = x)
cost = reg.msl(y)
a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度
b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度
updates = [(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数
train_model = theano.function(inputs = [index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]})
done = True
err = 0.0
count = 0
last = 0.0
start_time = time.clock()
while done:
#err_s = [train_model(i) for i in xrange(data.shape[0])]
for i in xxx:
err_s = [train_model(i) ]
err = np.mean(err_s)
#print err
count = count + 1
if count > 10000 or err < 0.1 :
done = False
last = err
end_time = time.clock()
print 'Total time is :' ,end_time - start_time, ' s' # 5.12s
print 'last error :' ,err
print 'a value : ' ,reg.a.get_value() # [ 2.92394467]
print 'b value : ' ,reg.b.get_value() # [ 1.81334458]
if __name__ = = '__main__' :
rate = 0.01
data = np.linspace( 1 , 10 , 10 )
labels = data * 3 + np.ones(data.shape[ 0 ],dtype = np.float64) + np.random.rand(data.shape[ 0 ])
regrun(rate,data,labels)
|
其基本思想是随机梯度下降。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/xujingpilot/article/details/75305150