POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

时间:2023-12-22 12:38:44

POJ 3177 Redundant Paths

POJ 3352 Road Construction

题目链接

题意:两题一样的。一份代码能交。给定一个连通无向图,问加几条边能使得图变成一个双连通图

思路:先求双连通。缩点后。计算入度为1的个数,然后(个数 + 1) / 2 就是答案(这题因为是仅仅有一个连通块所以能够这么搞,假设有多个,就不能这样搞了)

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int N = 1005;
const int M = 20005; int n, m;
struct Edge {
int u, v, id;
bool iscut;
Edge() {}
Edge(int u, int v, int id) {
this->u = u;
this->v = v;
this->id = id;
this->iscut = false;
}
} edge[M]; int first[N], next[M], en; void add_edge(int u, int v, int id) {
edge[en] = Edge(u, v, id);
next[en] = first[u];
first[u] = en++;
} void init() {
en = 0;
memset(first, -1, sizeof(first));
} int pre[N], dfn[N], dfs_clock, bccno[N], bccn; void dfs_cut(int u, int id) {
pre[u] = dfn[u] = ++dfs_clock;
for (int i = first[u]; i + 1; i = next[i]) {
if (edge[i].id == id) continue;
int v = edge[i].v;
if (!pre[v]) {
dfs_cut(v, edge[i].id);
dfn[u] = min(dfn[u], dfn[v]);
if (dfn[v] > pre[u])
edge[i].iscut = edge[i^1].iscut = true;
} else dfn[u] = min(dfn[u], pre[v]);
}
} void find_cut() {
dfs_clock = 0;
memset(pre, 0, sizeof(pre));
for (int i = 1; i <= n; i++)
if (!pre[i]) dfs_cut(i, -1);
} void dfs_bcc(int u) {
bccno[u] = bccn;
for (int i = first[u]; i + 1; i = next[i]) {
if (edge[i].iscut) continue;
int v = edge[i].v;
if (bccno[v]) continue;
dfs_bcc(v);
}
} void find_bcc() {
bccn = 0;
memset(bccno, 0, sizeof(bccno));
for (int i = 1; i <= n; i++) {
if (!bccno[i]) {
bccn++;
dfs_bcc(i);
}
}
} int du[N]; int main() {
while (~scanf("%d%d", &n, &m)) {
int u, v;
init();
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v);
add_edge(u, v, i);
add_edge(v, u, i);
}
find_cut();
find_bcc();
memset(du, 0, sizeof(du));
for (int i = 0; i < en; i += 2) {
if (!edge[i].iscut) continue;
int u = bccno[edge[i].u], v = bccno[edge[i].v];
if (u == v) continue;
du[u]++; du[v]++;
}
int cnt = 0;
for (int i = 1; i <= bccn; i++)
if (du[i] == 1) cnt++;
printf("%d\n", (cnt + 1) / 2);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。