Python卷积神经网络图片分类框架详解分析

时间:2022-11-19 14:57:53

【人工智能项目】卷积神经网络图片分类框架:

Python卷积神经网络图片分类框架详解分析


本次硬核分享当时做图片分类的工作,主要是整理了一个图片分类的框架,如果想换模型,引入新模型,在config中修改即可。那么走起来瓷!!!

Python卷积神经网络图片分类框架详解分析

 

整体结构

Python卷积神经网络图片分类框架详解分析

 

config

在config文件夹下的config.py中主要定义数据集的位置,训练轮数,batch_size以及本次选用的模型。

# 定义训练集和测试集的路径
train_data_path = "./data/train/"
train_anno_path = "./data/train.csv"
test_data_path = "./data/test/"
# 定义多线程
num_workers = 8
# 定义batch_size大小
batch_size = 8

# 定义训练轮数
epochs = 20
# 定义k折交叉验证
k = 5
# 定义模型选择
# inception_v3_google inceptionv4
# vgg16
# resnet50 resnet101 resnet152 resnext50_32x4d resnext101_32x8d wide_resnet50_2  wide_resnet101_2
# senet154 se_resnet50 se_resnet101  se_resnet152  se_resnext50_32x4d  se_resnext101_32x4d
# nasnetalarge  pnasnet5large
# densenet121 densenet161 densenet169 densenet201
# efficientnet-b0 efficientnet-b1 efficientnet-b2 efficientnet-b3 efficientnet-b4 efficientnet-b5 efficientnet-b6 efficientnet-b7
# xception
# squeezenet1_0 squeezenet1_1
# mobilenet_v2
# mnasnet0_5 mnasnet0_75 mnasnet1_0 mnasnet1_3
# shufflenet_v2_x0_5 shufflenet_v2_x1_0
model_name = "vgg16"

# 定义分类类别
num_classes = 102
# 定义图片尺寸
img_width = 320
img_height = 320

 

data

data文件夹存放了train和test图片信息。

Python卷积神经网络图片分类框架详解分析


在train.csv中的存放图片名称以及对应的标签

Python卷积神经网络图片分类框架详解分析

 

dataloader

dataloader里面主要有data.py和data_augmentation.py文件。其中一个用于读取数据,另外一个用于数据增强操作。

import torch
from PIL import Image
from torch.utils.data.dataset import Dataset
import numpy as np
import PIL
from torchvision import transforms
from config import config
import  os
import cv2
# 定义DataSet和Transform


# 将df转换成标准的numpy array形式
def get_anno(path, images_path):
  data = []
  with open(path) as f:
      for line in f:
          idx, label = line.strip().split(',')
          data.append((os.path.join(images_path, idx), int(label)))
  return np.array(data)

# 定义读取trainData,读取df文件
# 通过df的idx,来获取image_path和label
class trainDataset(Dataset):
  def __init__(self, data, transform=None):
      self.data = data
      self.transform = transform

  def __getitem__(self, idx):
      img_path, label = self.data[idx]
      img = Image.open(img_path).convert('RGB')
      #img = cv2.imread(img_path)
      #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
      if self.transform is not None:
          img = self.transform(img)
      return img, int(label)

  def __len__(self):
      return len(self.data)



# 通过文件路径来读取测试图片
class testDataset(Dataset):
  def __init__(self, img_path, transform=None):
      self.img_path = img_path
      if transform is not None:
          self.transform = transform
      else:
          self.transform = None

  def __getitem__(self, index):
      img = Image.open(self.img_path[index]).convert('RGB')
      # img = cv2.imread(self.img_path[index])
      # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

      if self.transform is not None:
          img = self.transform(img)
      return img

  def __len__(self):
      return len(self.img_path)


# train_transform = transforms.Compose([
#     transforms.Resize([config.img_width, config.img_height]),
#     transforms.RandomRotation(10),
#     transforms.ColorJitter(brightness=0.3, contrast=0.2),
#     transforms.RandomHorizontalFlip(),
#     transforms.ToTensor(),  # range [0, 255] -> [0.0,1.0]
#     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])

train_transform = transforms.Compose([
  transforms.Pad(4, padding_mode='reflect'),
  transforms.RandomRotation(10),
  transforms.RandomResizedCrop([config.img_width, config.img_height]),
  transforms.RandomHorizontalFlip(),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

val_transform = transforms.Compose([
  transforms.RandomResizedCrop([config.img_width, config.img_height]),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

test_transform = transforms.Compose([
  transforms.RandomResizedCrop([config.img_width, config.img_height]),
  transforms.ToTensor(),
  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
import random

from __future__ import division
import cv2
import numpy as np
from numpy import random
import math
from sklearn.utils import shuffle

# 固定角度随机旋转
class FixedRotation(object):
  def __init__(self, angles):
      self.angles = angles

  def __call__(self, img):
      return fixed_rotate(img, self.angles)


def fixed_rotate(img, angles):
  angles = list(angles)
  angles_num = len(angles)
  index = random.randint(0, angles_num - 1)
  return img.rotate(angles[index])



__all__ = ['Compose','RandomHflip', 'RandomUpperCrop', 'Resize', 'UpperCrop', 'RandomBottomCrop',"RandomErasing",
         'BottomCrop', 'Normalize', 'RandomSwapChannels', 'RandomRotate', 'RandomHShift',"CenterCrop","RandomVflip",
         'ExpandBorder', 'RandomResizedCrop','RandomDownCrop', 'DownCrop', 'ResizedCrop',"FixRandomRotate"]

def rotate_nobound(image, angle, center=None, scale=1.):
  (h, w) = image.shape[:2]


  # if the center is None, initialize it as the center of
  # the image
  if center is None:
      center = (w // 2, h // 2)

  # perform the rotation
  M = cv2.getRotationMatrix2D(center, angle, scale)
  rotated = cv2.warpAffine(image, M, (w, h))

  return rotated

def scale_down(src_size, size):
  w, h = size
  sw, sh = src_size
  if sh < h:
      w, h = float(w * sh) / h, sh
  if sw < w:
      w, h = sw, float(h * sw) / w
  return int(w), int(h)


def fixed_crop(src, x0, y0, w, h, size=None):
  out = src[y0:y0 + h, x0:x0 + w]
  if size is not None and (w, h) != size:
      out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
  return out

class FixRandomRotate(object):
  def __init__(self, angles=[0,90,180,270], bound=False):
      self.angles = angles
      self.bound = bound

  def __call__(self,img):
      do_rotate = random.randint(0, 4)
      angle=self.angles[do_rotate]
      if self.bound:
          img = rotate_bound(img, angle)
      else:
          img = rotate_nobound(img, angle)
      return img

def center_crop(src, size):
  h, w = src.shape[0:2]
  new_w, new_h = scale_down((w, h), size)

  x0 = int((w - new_w) / 2)
  y0 = int((h - new_h) / 2)

  out = fixed_crop(src, x0, y0, new_w, new_h, size)
  return out


def bottom_crop(src, size):
  h, w = src.shape[0:2]
  new_w, new_h = scale_down((w, h), size)

  x0 = int((w - new_w) / 2)
  y0 = int((h - new_h) * 0.75)

  out = fixed_crop(src, x0, y0, new_w, new_h, size)
  return out

def rotate_bound(image, angle):
  # grab the dimensions of the image and then determine the
  # center
  h, w = image.shape[:2]

  (cX, cY) = (w // 2, h // 2)

  M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0)
  cos = np.abs(M[0, 0])
  sin = np.abs(M[0, 1])

  # compute the new bounding dimensions of the image
  nW = int((h * sin) + (w * cos))
  nH = int((h * cos) + (w * sin))

  # adjust the rotation matrix to take into account translation
  M[0, 2] += (nW / 2) - cX
  M[1, 2] += (nH / 2) - cY

  rotated = cv2.warpAffine(image, M, (nW, nH))

  return rotated


class Compose(object):
  def __init__(self, transforms):
      self.transforms = transforms
  def __call__(self, img):
      for t in self.transforms:
          img = t(img)
      return img
class RandomRotate(object):
  def __init__(self, angles, bound=False):
      self.angles = angles
      self.bound = bound

  def __call__(self,img):
      do_rotate = random.randint(0, 2)
      if do_rotate:
          angle = np.random.uniform(self.angles[0], self.angles[1])
          if self.bound:
              img = rotate_bound(img, angle)
          else:
              img = rotate_nobound(img, angle)
      return img
class RandomBrightness(object):
  def __init__(self, delta=10):
      assert delta >= 0
      assert delta <= 255
      self.delta = delta

  def __call__(self, image):
      if random.randint(2):
          delta = random.uniform(-self.delta, self.delta)
          image = (image + delta).clip(0.0, 255.0)
          # print('RandomBrightness,delta ',delta)
      return image


class RandomContrast(object):
  def __init__(self, lower=0.9, upper=1.05):
      self.lower = lower
      self.upper = upper
      assert self.upper >= self.lower, "contrast upper must be >= lower."
      assert self.lower >= 0, "contrast lower must be non-negative."

  # expects float image
  def __call__(self, image):
      if random.randint(2):
          alpha = random.uniform(self.lower, self.upper)
          # print('contrast:', alpha)
          image = (image * alpha).clip(0.0,255.0)
      return image


class RandomSaturation(object):
  def __init__(self, lower=0.8, upper=1.2):
      self.lower = lower
      self.upper = upper
      assert self.upper >= self.lower, "contrast upper must be >= lower."
      assert self.lower >= 0, "contrast lower must be non-negative."

  def __call__(self, image):
      if random.randint(2):
          alpha = random.uniform(self.lower, self.upper)
          image[:, :, 1] *= alpha
          # print('RandomSaturation,alpha',alpha)
      return image


class RandomHue(object):
  def __init__(self, delta=18.0):
      assert delta >= 0.0 and delta <= 360.0
      self.delta = delta

  def __call__(self, image):
      if random.randint(2):
          alpha = random.uniform(-self.delta, self.delta)
          image[:, :, 0] += alpha
          image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
          image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
          # print('RandomHue,alpha:', alpha)
      return image


class ConvertColor(object):
  def __init__(self, current='BGR', transform='HSV'):
      self.transform = transform
      self.current = current

  def __call__(self, image):
      if self.current == 'BGR' and self.transform == 'HSV':
          image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
      elif self.current == 'HSV' and self.transform == 'BGR':
          image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
      else:
          raise NotImplementedError
      return image

class RandomSwapChannels(object):
  def __call__(self, img):
      if np.random.randint(2):
          order = np.random.permutation(3)
          return img[:,:,order]
      return img

class RandomCrop(object):
  def __init__(self, size):
      self.size = size
  def __call__(self, image):
      h, w, _ = image.shape
      new_w, new_h = scale_down((w, h), self.size)

      if w == new_w:
          x0 = 0
      else:
          x0 = random.randint(0, w - new_w)

      if h == new_h:
          y0 = 0
      else:
          y0 = random.randint(0, h - new_h)

      out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
      return out



class RandomResizedCrop(object):
  def __init__(self, size,scale=(0.49, 1.0), ratio=(1., 1.)):
      self.size = size
      self.scale = scale
      self.ratio = ratio

  def __call__(self,img):
      if random.random() < 0.2:
          return cv2.resize(img,self.size)
      h, w, _ = img.shape
      area = h * w
      d=1
      for attempt in range(10):
          target_area = random.uniform(self.scale[0], self.scale[1]) * area
          aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


          new_w = int(round(math.sqrt(target_area * aspect_ratio)))
          new_h = int(round(math.sqrt(target_area / aspect_ratio)))

          if random.random() < 0.5:
              new_h, new_w = new_w, new_h

          if new_w < w and new_h < h:
              x0 = random.randint(0, w - new_w)
              y0 = (random.randint(0, h - new_h))//d
              out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

              return out

      # Fallback
      return center_crop(img, self.size)


class DownCrop():
  def __init__(self, size,  select, scale=(0.36,0.81)):
      self.size = size
      self.scale = scale
      self.select = select

  def __call__(self,img, attr_idx):
      if attr_idx not in self.select:
          return img, attr_idx
      if attr_idx == 0:
          self.scale=(0.64,1.0)
      h, w, _ = img.shape
      area = h * w

      s = (self.scale[0]+self.scale[1])/2.0

      target_area = s * area

      new_w = int(round(math.sqrt(target_area)))
      new_h = int(round(math.sqrt(target_area)))

      if new_w < w and new_h < h:
          dw = w-new_w
          x0 = int(0.5*dw)
          y0 = h-new_h
          out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
          return out, attr_idx

      # Fallback
      return center_crop(img, self.size), attr_idx


class ResizedCrop(object):
  def __init__(self, size, select,scale=(0.64, 1.0), ratio=(3. / 4., 4. / 3.)):
      self.size = size
      self.scale = scale
      self.ratio = ratio
      self.select = select

  def __call__(self,img, attr_idx):
      if attr_idx not in self.select:
          return img, attr_idx
      h, w, _ = img.shape
      area = h * w
      d=1
      if attr_idx == 2:
          self.scale=(0.36,0.81)
          d=2
      if attr_idx == 0:
          self.scale=(0.81,1.0)

      target_area = (self.scale[0]+self.scale[1])/2.0 * area
      # aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])


      new_w = int(round(math.sqrt(target_area)))
      new_h = int(round(math.sqrt(target_area)))

      # if random.random() < 0.5:
      #     new_h, new_w = new_w, new_h

      if new_w < w and new_h < h:
          x0 =  (w - new_w)//2
          y0 = (h - new_h)//d//2
          out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
          # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
          # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
          #
          # cv2.waitKey(0)
          return out, attr_idx

      # Fallback
      return center_crop(img, self.size), attr_idx

class RandomHflip(object):
  def __call__(self, image):
      if random.randint(2):
          return cv2.flip(image, 1)
      else:
          return image
class RandomVflip(object):
  def __call__(self, image):
      if random.randint(2):
          return cv2.flip(image, 0)
      else:
          return image


class Hflip(object):
  def __init__(self,doHflip):
      self.doHflip = doHflip

  def __call__(self, image):
      if self.doHflip:
          return cv2.flip(image, 1)
      else:
          return image


class CenterCrop(object):
  def __init__(self, size):
      self.size = size

  def __call__(self, image):
      return center_crop(image, self.size)

class UpperCrop():
  def __init__(self, size, scale=(0.09, 0.64)):
      self.size = size
      self.scale = scale

  def __call__(self,img):
      h, w, _ = img.shape
      area = h * w

      s = (self.scale[0]+self.scale[1])/2.0

      target_area = s * area

      new_w = int(round(math.sqrt(target_area)))
      new_h = int(round(math.sqrt(target_area)))

      if new_w < w and new_h < h:
          dw = w-new_w
          x0 = int(0.5*dw)
          y0 = 0
          out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
          return out

      # Fallback
      return center_crop(img, self.size)



class RandomUpperCrop(object):
  def __init__(self, size, select, scale=(0.09, 0.64), ratio=(3. / 4., 4. / 3.)):
      self.size = size
      self.scale = scale
      self.ratio = ratio
      self.select = select

  def __call__(self,img, attr_idx):
      if random.random() < 0.2:
          return img, attr_idx
      if attr_idx not in self.select:
          return img, attr_idx

      h, w, _ = img.shape
      area = h * w
      for attempt in range(10):
          s = random.uniform(self.scale[0], self.scale[1])
          d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
          target_area = s * area
          aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
          new_w = int(round(math.sqrt(target_area * aspect_ratio)))
          new_h = int(round(math.sqrt(target_area / aspect_ratio)))


          # new_w = int(round(math.sqrt(target_area)))
          # new_h = int(round(math.sqrt(target_area)))

          if new_w < w and new_h < h:
              dw = w-new_w
              x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
              y0 = (random.randint(0, h - new_h))//10
              out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
              return out, attr_idx

      # Fallback
      return center_crop(img, self.size), attr_idx
class RandomDownCrop(object):
  def __init__(self, size, select, scale=(0.36, 0.81), ratio=(3. / 4., 4. / 3.)):
      self.size = size
      self.scale = scale
      self.ratio = ratio
      self.select = select

  def __call__(self,img, attr_idx):
      if random.random() < 0.2:
          return img, attr_idx
      if attr_idx not in self.select:
          return img, attr_idx
      if attr_idx == 0:
          self.scale=(0.64,1.0)

      h, w, _ = img.shape
      area = h * w
      for attempt in range(10):
          s = random.uniform(self.scale[0], self.scale[1])
          d = 0.1 + (0.3 - 0.1) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
          target_area = s * area
          aspect_ratio = random.uniform(self.ratio[0], self.ratio[1])
          new_w = int(round(math.sqrt(target_area * aspect_ratio)))
          new_h = int(round(math.sqrt(target_area / aspect_ratio)))
          #
          # new_w = int(round(math.sqrt(target_area)))
          # new_h = int(round(math.sqrt(target_area)))

          if new_w < w and new_h < h:
              dw = w-new_w
              x0 = random.randint(int((0.5-d)*dw), int((0.5+d)*dw)+1)
              y0 = (random.randint((h - new_h)*9//10, h - new_h))
              out = fixed_crop(img, x0, y0, new_w, new_h, self.size)

              # cv2.imshow('{}_img'.format(idx2attr_map[attr_idx]), img)
              # cv2.imshow('{}_crop'.format(idx2attr_map[attr_idx]), out)
              #
              # cv2.waitKey(0)

              return out, attr_idx

      # Fallback
      return center_crop(img, self.size), attr_idx

class RandomHShift(object):
  def __init__(self, select, scale=(0.0, 0.2)):
      self.scale = scale
      self.select = select

  def __call__(self,img, attr_idx):
      if attr_idx not in self.select:
          return img, attr_idx
      do_shift_crop = random.randint(0, 2)
      if do_shift_crop:
          h, w, _ = img.shape
          min_shift = int(w*self.scale[0])
          max_shift = int(w*self.scale[1])
          shift_idx = random.randint(min_shift, max_shift)
          direction = random.randint(0,2)
          if direction:
              right_part = img[:, -shift_idx:, :]
              left_part = img[:, :-shift_idx, :]
          else:
              left_part = img[:, :shift_idx, :]
              right_part = img[:, shift_idx:, :]
          img = np.concatenate((right_part, left_part), axis=1)

      # Fallback
      return img, attr_idx


class RandomBottomCrop(object):
  def __init__(self, size, select, scale=(0.4, 0.8)):
      self.size = size
      self.scale = scale
      self.select = select

  def __call__(self,img, attr_idx):
      if attr_idx not in self.select:
          return img, attr_idx

      h, w, _ = img.shape
      area = h * w
      for attempt in range(10):
          s = random.uniform(self.scale[0], self.scale[1])
          d = 0.25 + (0.45 - 0.25) / (self.scale[1] - self.scale[0]) * (s - self.scale[0])
          target_area = s * area

          new_w = int(round(math.sqrt(target_area)))
          new_h = int(round(math.sqrt(target_area)))

          if new_w < w and new_h < h:
              dw = w-new_w
              dh = h - new_h
              x0 = random.randint(int((0.5-d)*dw), min(int((0.5+d)*dw)+1,dw))
              y0 = (random.randint(max(0,int(0.8*dh)-1), dh))
              out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
              return out, attr_idx

      # Fallback
      return bottom_crop(img, self.size), attr_idx


class BottomCrop():
  def __init__(self, size,  select, scale=(0.4, 0.8)):
      self.size = size
      self.scale = scale
      self.select = select

  def __call__(self,img, attr_idx):
      if attr_idx not in self.select:
          return img, attr_idx

      h, w, _ = img.shape
      area = h * w

      s = (self.scale[0]+self.scale[1])/3.*2.

      target_area = s * area

      new_w = int(round(math.sqrt(target_area)))
      new_h = int(round(math.sqrt(target_area)))

      if new_w < w and new_h < h:
          dw = w-new_w
          dh = h-new_h
          x0 = int(0.5*dw)
          y0 = int(0.9*dh)
          out = fixed_crop(img, x0, y0, new_w, new_h, self.size)
          return out, attr_idx

      # Fallback
      return bottom_crop(img, self.size), attr_idx



class Resize(object):
  def __init__(self, size, inter=cv2.INTER_CUBIC):
      self.size = size
      self.inter = inter

  def __call__(self, image):
      return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

class ExpandBorder(object):
  def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
      self.mode = mode
      self.value = value
      self.resize = resize
      self.size = size

  def __call__(self, image):
      h, w, _ = image.shape
      if h > w:
          pad1 = (h-w)//2
          pad2 = h - w - pad1
          if self.mode == 'constant':
              image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                             self.mode, constant_values=self.value)
          else:
              image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
      elif h < w:
          pad1 = (w-h)//2
          pad2 = w-h - pad1
          if self.mode == 'constant':
              image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                             self.mode,constant_values=self.value)
          else:
              image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
      if self.resize:
          image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
      return image
class AstypeToInt():
  def __call__(self, image, attr_idx):
      return image.clip(0,255.0).astype(np.uint8), attr_idx

class AstypeToFloat():
  def __call__(self, image, attr_idx):
      return image.astype(np.float32), attr_idx

import matplotlib.pyplot as plt
class Normalize(object):
  def __init__(self,mean, std):
      '''
      :param mean: RGB order
      :param std:  RGB order
      '''
      self.mean = np.array(mean).reshape(3,1,1)
      self.std = np.array(std).reshape(3,1,1)
  def __call__(self, image):
      '''
      :param image:  (H,W,3)  RGB
      :return:
      '''
      # plt.figure(1)
      # plt.imshow(image)
      # plt.show()
      return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

class RandomErasing(object):
  def __init__(self, select,EPSILON=0.5,sl=0.02, sh=0.09, r1=0.3, mean=[0.485, 0.456, 0.406]):
      self.EPSILON = EPSILON
      self.mean = mean
      self.sl = sl
      self.sh = sh
      self.r1 = r1
      self.select = select

  def __call__(self, img,attr_idx):
      if attr_idx not in self.select:
          return img,attr_idx

      if random.uniform(0, 1) > self.EPSILON:
          return img,attr_idx

      for attempt in range(100):
          area = img.shape[1] * img.shape[2]

          target_area = random.uniform(self.sl, self.sh) * area
          aspect_ratio = random.uniform(self.r1, 1 / self.r1)

          h = int(round(math.sqrt(target_area * aspect_ratio)))
          w = int(round(math.sqrt(target_area / aspect_ratio)))

          if w <= img.shape[2] and h <= img.shape[1]:
              x1 = random.randint(0, img.shape[1] - h)
              y1 = random.randint(0, img.shape[2] - w)
              if img.shape[0] == 3:
                  # img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                  # img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                  # img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
                  img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
                  img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
                  img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
                  # img[:, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(3, h, w))
              else:
                  img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
                  # img[0, x1:x1+h, y1:y1+w] = torch.from_numpy(np.random.rand(1, h, w))
              return img,attr_idx

      return img,attr_idx

# if __name__ == '__main__':
#     import matplotlib.pyplot as plt
#
#
#     class FSAug(object):
#         def __init__(self):
#             self.augment = Compose([
#                 AstypeToFloat(),
#                 # RandomHShift(scale=(0.,0.2),select=range(8)),
#                 # RandomRotate(angles=(-20., 20.), bound=True),
#                 ExpandBorder(select=range(8), mode='symmetric'),# symmetric
#                 # Resize(size=(336, 336), select=[ 2, 7]),
#                 AstypeToInt()
#             ])
#
#         def __call__(self, spct,attr_idx):
#             return self.augment(spct,attr_idx)
#
#
#     trans = FSAug()
#
#     img_path = '/media/gserver/data/FashionAI/round2/train/Images/coat_length_labels/0b6b4a2146fc8616a19fcf2026d61d50.jpg'
#     img = cv2.cvtColor(cv2.imread(img_path),cv2.COLOR_BGR2RGB)
#     img_trans,_ = trans(img,5)
#     # img_trans2,_ = trans(img,6)
#     print img_trans.max(), img_trans.min()
#     print img_trans.dtype
#
#     plt.figure()
#     plt.subplot(221)
#     plt.imshow(img)
#
#     plt.subplot(222)
#     plt.imshow(img_trans)
#
#     # plt.subplot(223)
#     # plt.imshow(img_trans2)
#     # plt.imshow(img_trans2)
#     plt.show()

 

factory

factory里面主要定义了一些学习率,损失函数,优化器等之类的。

Python卷积神经网络图片分类框架详解分析

 

models

models中主要定义了常见的分类模型。

Python卷积神经网络图片分类框架详解分析

 

train.py

import os
from sklearn.model_selection import KFold
from torchvision import transforms
import torch.utils.data
from dataloader.data import trainDataset,train_transform,val_transform,get_anno
from factory.loss import *
from models.model import Model
from config import config
import numpy as np
from utils import utils
from factory.LabelSmoothing import LSR


def train(model_type, prefix):
  # df -> numpy.array()形式
  data = get_anno(config.train_anno_path, config.train_data_path)
  # 5折交叉验证
  skf = KFold(n_splits=config.k, random_state=233, shuffle=True)

  for flod_idx, (train_indices, val_indices) in enumerate(skf.split(data)):
      train_loader = torch.utils.data.DataLoader(
          trainDataset(data[train_indices],
                       train_transform),
          batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True
      )

      val_loader = torch.utils.data.DataLoader(
          trainDataset(data[val_indices],
                       val_transform),
          batch_size=config.batch_size, shuffle=False, num_workers=config.num_workers, pin_memory=True
      )

      #criterion = FocalLoss(0.5)
      criterion = LSR()
      device = 'cuda' if torch.cuda.is_available() else 'cpu'
      model = Model(model_type, config.num_classes, criterion, device=device, prefix=prefix, suffix=str(flod_idx))

      for epoch in range(config.epochs):
          print('Epoch: ', epoch)

          model.fit(train_loader)
          model.validate(val_loader)


if __name__ == '__main__':
  model_type_list = [config.model_name]
  for model_type in model_type_list:
      train(model_type, "resize")


 

小结

本次主要给出一个图片分类的框架,方便快速的切换模型。
那下回见!!!欢迎大家多多点赞评论呀!!!

Python卷积神经网络图片分类框架详解分析

到此这篇关于Python卷积神经网络图片分类框架详解分析的文章就介绍到这了,更多相关Python 卷积神经网络内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/Mind_programmonkey/article/details/121098065