0 引言
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。
1 分表
1.1 大数据量并且访问频繁的表,将其分为若干表
某网站现在的数据量至多是5000万条,可以设计每张表容纳的数据量是500万条,也就是拆分成10张表,那么如何判断某张表的数据是否容量已满呢?可以在程序段对于要新增数据的表,在插入前先做统计表记录数量的操作,当<500万条数据,就直接插入,当已经到达阀值,可以在程序段新创建数据库表(或者已经事先创建好),再执行插入操作。
1.2 利用merge存储引擎来实现分表
2 分库分表的方法
2.1 垂直拆分
1. 垂直分表
也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。一般是针对那种几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。
2. 垂直分库
垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Producet一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。
2.2 水平拆分
1. 水平分表
针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。
2. 水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。
3. 切分规则
1. Range:从0到10000一个表,10001到20000一个表;
2. Hash取模:一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。
3. 地理区域:比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。
4. 时间:按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。
3 分库分表方案产品
目前市面上的分库分表中间件相对较多,其中基于代理方式的有MySQL Proxy和Amoeba, 基于Hibernate框架的是Hibernate Shards,基于jdbc的有当当sharding-jdbc, 基于mybatis的类似maven插件式的有蘑菇街的蘑菇街TSharding, 通过重写spring的ibatis template类的Cobar Client。