自从python2.2提供了yield关键字之后,python的生成器的很大一部分用途就是可以用来构建协同程序,能够将函数挂起返回中间值并能从上次离开的地方继续执行。python2.5的时候,这种生成器更加接近完全的协程,因为提供了将值和异常传递回到一个继续执行的函数中,当等待生成器的时候,生成器能返回控制。
python提供的生成器设施:
- yield:能够将自己挂起,并提供一个返回值给等待方
- send:唤起一个被挂起的生成器,并能够传递一个参数,可以在生成器中抛出异常
- next:本质上相当于send(None),对每个生成器的第一次调用必须不能传递参数
- close:主动退出一个生成器
python封装
虽然python3提供了asyncio这样的异步IO库,而且也有greenlet等其他协程库,但目前的需求并不是实际的网络IO并发操作,而是需要模拟状态机的运行,因此使用协程可以很方便的模拟,并加入认为的控制,下面是封装的一个python类。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
class Coroutine( object ):
""" Base class of the general coroutine object """
STATE_RUNNING = 0
STATE_WAITING = 1
STATE_CLOSING = 2
def __init__( self ):
self .state = Coroutine.STATE_WAITING
self .started = False
self .args = None
self .routine = self ._co()
def _co( self ):
self .ret = None
while True :
self .args = yield self .ret
if not self .started:
self .started = True
continue
else :
self .state = Coroutine.STATE_RUNNING
self .ret = self .run( self .args)
if self .state = = Coroutine.STATE_CLOSING:
break
self .state = Coroutine.STATE_WAITING
def start( self ):
""" Start the generator """
if self .routine is None :
raise RuntimeError( 'NO task to start running!' )
self .started = True
self .routine. next ()
def finish( self ):
""" Finish the execution of this routine """
self .state = Coroutine.STATE_CLOSING
self .routine.close()
def run( self , args):
""" The runing method to be executed every once time"""
raise NotImplementedError
def execute( self , arg_obj):
""" Awake this routine to execute once time """
return self .routine.send(arg_obj)
|
基于上述封装,下面实现了一个协同的生产者消费者示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
class ProducerCoroutine(Coroutine):
""" The Producer concrete coroutine """
def __init__( self , cnsmr):
if not isinstance (cnsmr, Coroutine):
raise RuntimeError( 'Consumer is not a Coroutine object' )
self .consumer = cnsmr
self .consumer.start()
super (ProducerCoroutine, self ).__init__()
def run( self , args):
print 'produce ' , args
ret = self .consumer.execute(args)
print 'consumer return:' , ret
def __call__( self , args):
""" Custom method for the specific logic """
self .start()
while len (args) > 0 :
p = args.pop()
self .execute(p)
self .finish()
class ConsumerCoroutine(Coroutine):
""" The Consumer concrete coroutine """
def __init__( self ):
super (ConsumerCoroutine, self ).__init__()
def run( self , args):
print 'consumer get args: ' , args
return 'hahaha' + repr (args)
|
运行结果如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
produce 4
consumer get args: 4
consumer return : hahaha4
produce 3
consumer get args: 3
consumer return : hahaha3
produce 2
consumer get args: 2
consumer return : hahaha2
produce 1
consumer get args: 1
consumer return : hahaha1
produce 0
consumer get args: 0
consumer return : hahaha0
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u010487568/article/details/62042709