关于Numpy之repeat、tile的用法总结

时间:2022-11-16 23:12:36

repeat函数的作用:①扩充数组元素 ②降低数组维度

numpy.repeat(a, repeats, axis=none):若axis=none,对于多维数组而言,可以将多维数组变化为一维数组,然后再根据repeats参数扩充数组元素;若axis=m,表示数组在轴m上扩充数组元素。

下面以3维数组为例,了解下repeat函数的使用方法:

?
1
2
3
4
5
6
7
8
in [1]: import numpy as np
in [2]: arr = np.arange(12).reshape(1,4,3)
in [3]: arr
out[3]:
array([[[ 012],
        [ 345],
        [ 678],
        [ 9, 10, 11]]])

①repeats为整数n,axis=none:数组arr首先被扁平化,然后将数组arr中的各个元素 依次重复n次

?
1
2
3
4
in [4]: arr.repeat(2)
out[4]:
array([ 00112233445566778,
        899, 10, 10, 11, 11])

②repeats为整数数组rp_arr,axis=none:数组arr首先被扁平化,然后再将数组arr中元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr中各个元素重复相同次数,否则rp_arr数组长度必须和数组arr的长度相等,否则报错

a:rp_arr为单值一维数组,进行广播

?
1
2
3
4
in [5]: arr.repeat([2])
out[5]:
array([ 00112233445566778,
        899, 10, 10, 11, 11])

b:rp_arr长度小于数组arr长度,无法进行广播,报错

in [6]: arr.repeat([2,3,4])
---------------------------------------------------------------------------
valueerror traceback (most recent call last)
<ipython-input-6-d3b52907284c> in <module>()
----> 1 arr.repeat([2,3,4])

valueerror: operands could not be broadcast together with shape (12,) (3,)

c:rp_arr长度和数组arr长度相等

?
1
2
3
4
5
6
in [7]: arr.repeat(np.arange(12))
out[7]:
array([ 12233344445555566,
        66667777777888888,
        88999999999, 10, 10, 10, 10, 10, 10,
       10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11])

d:rp_arr长度大于数组arr长度,也无法广播,报错

in [8]: arr.repeat(np.arange(13))
---------------------------------------------------------------------------
valueerror traceback (most recent call last)
<ipython-input-8-ec8454224d1b> in <module>()
----> 1 arr.repeat(np.arange(13))

valueerror: operands could not be broadcast together with shape (12,) (13,)

结论:两个数组满足广播的条件是两个数组的后缘维度(即从末尾开始算起的维度)的轴长度相等或其中一方的长度为1

③repeats为整数n,axis=m:数组arr的轴m上的每个元素重复n次,m=-1代表最后一条轴

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
in [9]: arr.repeat(2,axis=0)
out[9]:
array([[[ 012],
        [ 345],
        [ 678],
        [ 9, 10, 11]],
 
       [[ 012],
        [ 345],
        [ 678],
        [ 9, 10, 11]]])
in [12]: arr.repeat(2,axis=-1)#arr.repeat(2,axis=-1)等同于arr.repeat(2,axis=2)
out[12]:
array([[[ 001122],
        [ 334455],
        [ 667788],
        [ 99, 10, 10, 11, 11]]])

④repeats为整数数组rp_arr,axis=m:把数组arr1轴m上的元素依次重复对应rp_arr数组中元素对应次数。若rp_arr为一个值的一维数组,则数组arr1轴m上的各个元素重复相同次数,否则rp_arr数组长度必须和数组arr1轴m的长度相等,否则报错

a:rp_arr长度和数组arr1轴m上长度相等

在轴0上扩充数组元素

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
in [13]: arr1 = np.arange(24).reshape(4,2,3)
in [14]: arr1
out[14]:
array([[[ 012],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
in [15]: arr1.repeat((1,2,3,4),axis=0)
out[15]:
array([[[ 012],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

在轴1上扩充数组元素

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
in [19]: arr1.repeat([1,2],axis=1)
out[19]:
array([[[ 012],
        [ 345],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23],
        [21, 22, 23]]])

b:rp_arr为单值数组时,进行广播

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
in [20]: arr1.repeat([2],axis=0)
out[20]:
array([[[ 012],
        [ 345]],
 
       [[ 012],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]],
 
       [[18, 19, 20],
        [21, 22, 23]]])

c:rp_arr和数组arr1某轴不满足广播条件,则报错

in [21]: arr1.repeat((1,2,3),axis=0)
---------------------------------------------------------------------------
valueerror traceback (most recent call last)
<ipython-input-21-8ae4dc97e410> in <module>()
----> 1 arr1.repeat((1,2,3),axis=0)

valueerror: operands could not be broadcast together with shape (4,) (3,)

tile函数两个作用:①扩充数组元素 ②提升数组维度

numpy.tile(a, reps):根据reps中元素扩充数组a中对应轴上的元素

①reps为整数n:可以把整数n理解成含一个元素n的序列reps,若数组.ndim大于reps序列的长度,则需在reps序列的索引为0的位置开始添加元素1,直到reps的长度和数组的维度数相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

对于一维数组而言:是整体数组重复n次,从数组的最后一位置开始重复,注意与repeat函数的区别

?
1
2
3
4
5
in [26]: arr3 = np.arange(4)
in [27]: arr3
out[27]: array([0, 1, 2, 3])
in [28]: np.tile(arr3,2)
out[28]: array([0, 1, 2, 3, 0, 1, 2, 3])

对多维数组而言:arr2.ndim=3,,reps=[2,],可以看出数组的长度大于序列reps的长度,因此需要向reps中添加元素,变成reps=[1,1,2],然后arr2数组再根据reps中的元素重复其对应轴上的元素,reps=[1,1,2]代表数组arr2在轴0上各个元素重复1次,在轴1上的各个元素重复1次,在轴1上的各个元素重复2次

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
in [29]: arr2 = np.arange(24).reshape(4,2,3)
in [30]: arr2
out[30]:
array([[[ 012],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
in [31]: np.tile(arr2,2)
out[31]:
array([[[ 012012],
        [ 345345]],
 
       [[ 678678],
        [ 9, 10, 119, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23]]])

②reps为整数序列rp_arr:若数组.ndim大于rp_arr长度,方法同①相同,若数组ndim小于rp_arr长度,则需在数组的首缘维添加新轴,直到数组的维度数和rp_arr长度相等,然后数组各轴上的元素依次重复reps序列中元素对应的次数

a:数组维度大于rp_arr长度:需rp_arr提升为(1,2,3)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
in [33]: arr2 = np.arange(24).reshape(4,2,3)
in [34]: arr2
out[34]:
array([[[ 012],
        [ 345]],
 
       [[ 678],
        [ 9, 10, 11]],
 
       [[12, 13, 14],
        [15, 16, 17]],
 
       [[18, 19, 20],
        [21, 22, 23]]])
 
in [35]: np.tile(arr2,(2,3))
out[35]:
array([[[ 012012012],
        [ 345345345],
        [ 012012012],
        [ 345345345]],
 
       [[ 678678678],
        [ 9, 10, 119, 10, 119, 10, 11],
        [ 678678678],
        [ 9, 10, 119, 10, 119, 10, 11]],
 
       [[12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17],
        [12, 13, 14, 12, 13, 14, 12, 13, 14],
        [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
       [[18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23],
        [18, 19, 20, 18, 19, 20, 18, 19, 20],
        [21, 22, 23, 21, 22, 23, 21, 22, 23]]])

b:数组的维度小于rp_arr的长度:需在数组的首缘维度新增加一条轴,使其shape变为(1,4,2,3)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
in [36]: np.tile(arr2,(2,1,1,3))
out[36]:
array([[[[ 012012012],
         [ 345345345]],
 
        [[ 678678678],
         [ 9, 10, 119, 10, 119, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]],
 
 
       [[[ 012012012],
         [ 345345345]],
 
        [[ 678678678],
         [ 9, 10, 119, 10, 119, 10, 11]],
 
        [[12, 13, 14, 12, 13, 14, 12, 13, 14],
         [15, 16, 17, 15, 16, 17, 15, 16, 17]],
 
        [[18, 19, 20, 18, 19, 20, 18, 19, 20],
         [21, 22, 23, 21, 22, 23, 21, 22, 23]]]])

numpy的repeat和tile 用来复制数组

repeat和tile都可以用来复制数组的,但是有一些区别

关键区别在于repeat是对于元素的复制,tile是以整个数组为单位的 ,repeat复制时元素依次复制,注意不要用错,区别类似于[1,1,2,2]和[1,2,1,2]

repeat

用法

?
1
np.repeat(a, repeats, axis=none)

重复复制数组a的元素,元素的定义与axis有关,axis不指定时,数组会被展开进行复制,每个元素就是一个值,指定axis时,就是aixis指定维度上的一个元素

?
1
2
a = np.array([[1,2],
                      [3,4]])

不指定axis,默认none,这时候数组会被展开成1维,再进行复制

?
1
np.repeat(a, 2# 所有元素依次复制相同的次数

关于Numpy之repeat、tile的用法总结

参数是列表

?
1
np.repeat(a, [1, 2, 1, 2])  # 如果第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里都是4

关于Numpy之repeat、tile的用法总结

指定axis

指定时,就是指定了复制元素沿的维度,这时候就不会把数组展平,会维持原来的维度数

?
1
np.repeat(a, 2,  axi=0# 所有沿着0维的元素依次复制相同的次数

关于Numpy之repeat、tile的用法总结

?
1
np.repeat(a, [1, 2], axis=1# 第二个参数是列表,列表长度必须和a的复制可选元素数目相等,这里是2

结果如下,复制元素从第1维度算,可以看到第一列被复制了一次,第二列被复制了两次

关于Numpy之repeat、tile的用法总结

tile

用法

?
1
np.tile(a, repeats)

复制数组,repeats可以是整数或者元组、数组

repeats是整数

示例如下,它会将数组复制两份,并且在最后一维将两个元素叠加在一起,数组的维数不变,最后一维根据复制次数加倍

关于Numpy之repeat、tile的用法总结

repeats是列表或元组

如果列表长度是1,和整数时相同。

列表长度不为1时,列表从后向前看,最后一项是2,所以复制两个数组,在最后一维进行叠加,倒数第二项是3,将前步的结果进行复制,并在倒数第二维,结果如下

关于Numpy之repeat、tile的用法总结

当列表的长度超过数组的维数时,和前面类似,从后向前复制,复制结果会增加维度与列表的维数匹配,结果如下,在上面的基础上,增加了一维

关于Numpy之repeat、tile的用法总结

复制结果的shape

关于Numpy之repeat、tile的用法总结

但是对于 简单的单个数组重复,个人更喜欢使用stack和concatenate将同一个数组堆叠起来

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/kancy110/article/details/70980127