之所以说”使用”而不是”实现”,是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了。随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法。
言归正传,什么是”最小二乘法”呢?
定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。
作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
原则:以”残差平方和最小”确定直线位置(在数理统计中,残差是指实际观察值与估计值之间的差)
数学公式:
基本思路:对于一元线性回归模型,假设从总体中获取了n组观察值(X1,Y1),(X2,Y2),…,(Xn,Yn),对于平面中的这n个点,可以使用无数条曲线来拟合。而线性回归就是要求样本回归函数尽可能好地拟合这组值,也就是说,这条直线应该尽可能的处于样本数据的中心位置。因此,选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。
实现代码如下,代码中已经详细的给了注释:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
##最小二乘法
import numpy as np ##科学计算库
import scipy as sp ##在numpy基础上实现的部分算法库
import matplotlib.pyplot as plt ##绘图库
from scipy.optimize import leastsq ##引入最小二乘法算法
'''
设置样本数据,真实数据需要在这里处理
'''
##样本数据(Xi,Yi),需要转换成数组(列表)形式
Xi = np.array([ 6.19 , 2.51 , 7.29 , 7.01 , 5.7 , 2.66 , 3.98 , 2.5 , 9.1 , 4.2 ])
Yi = np.array([ 5.25 , 2.83 , 6.41 , 6.71 , 5.1 , 4.23 , 5.05 , 1.98 , 10.5 , 6.3 ])
'''
设定拟合函数和偏差函数
函数的形状确定过程:
1.先画样本图像
2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)
'''
##需要拟合的函数func :指定函数的形状
def func(p,x):
k,b = p
return k * x + b
##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的
def error(p,x,y):
return func(p,x) - y
'''
主要部分:附带部分说明
1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
2.官网的原话(第二个值):Value of the cost function at the solution
3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3)
4.返回值元组中第一个值的数量跟需要求解的参数的数量一致
'''
#k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]
p0 = [ 1 , 20 ]
#把error函数中除了p0以外的参数打包到args中(使用要求)
Para = leastsq(error,p0,args = (Xi,Yi))
#读取结果
k,b = Para[ 0 ]
print ( "k=" ,k, "b=" ,b)
print ( "cost:" + str (Para[ 1 ]))
print ( "求解的拟合直线为:" )
print ( "y=" + str ( round (k, 2 )) + "x+" + str ( round (b, 2 )))
'''
绘图,看拟合效果.
matplotlib默认不支持中文,label设置中文的话需要另行设置
如果报错,改成英文就可以
'''
#画样本点
plt.figure(figsize = ( 8 , 6 )) ##指定图像比例: 8:6
plt.scatter(Xi,Yi,color = "green" ,label = "样本数据" ,linewidth = 2 )
#画拟合直线
x = np.linspace( 0 , 12 , 100 ) ##在0-15直接画100个连续点
y = k * x + b ##函数式
plt.plot(x,y,color = "red" ,label = "拟合直线" ,linewidth = 2 )
plt.legend(loc = 'lower right' ) #绘制图例
plt.show()
|
结果如下所示:
输出结果:
k= 0.900458420439 b= 0.831055638877
cost:1
求解的拟合直线为:
y=0.9x+0.83
绘图结果:
补充说明:简单的列举了直线的情况,曲线的求解方式类似,但是曲线会存在过度拟合的情况,在以后的博客中会讲到。
总结
以上就是本文关于Python中实现最小二乘法思路及实现代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
原文链接:https://www.cnblogs.com/lc1217/p/6514734.html