3240: [Noi2013]矩阵游戏
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 613 Solved: 256
[Submit][Status]
Description
婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:
F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)
F[i,1]=c*F[i-1][m]+d (i!=1)
递推式中a,b,c,d都是给定的常数。
现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。
Input
一行有六个整数n,m,a,b,c,d。意义如题所述
Output
包含一个整数,表示F[n][m]除以1,000,000,007的余数
Sample Input
3 4 1 3 2 6
Sample Output
85
HINT
样例中的矩阵为:
1 4 7 10
26 29 32 35
76 79 82 85
本着NOIP前刷水题的想法做了这道没有数据范围的题,结果发现n,m范围实在是有一点过分了,十进制快速幂不说了,这道题应该是专门在卡普通的O(n^3)矩阵乘法,由于题目中矩阵第二行都没有变,所以说可以借此优化一下常数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define MAXN 2100000
typedef long long qword;
struct matrix
{
qword a[][];
int n,m;
matrix()
{
memset(a,,sizeof(a));
}
void init0()
{
n=m=;
a[][]=a[][]=;
a[][]=a[][]=;
}
void init1(int aa,int bb)
{
n=m=;
a[][]=aa;
a[][]=bb;
a[][]=;
}
void init2(int aa)
{
n=;m=;
a[][]=aa;
a[][]=;
}
};
inline matrix operator *(matrix m1,matrix m2)
{
int i,j,k;
matrix ret;
ret.n=m1.n;
ret.m=m2.m;
if (ret.n== && ret.m==)
{
if (m1.a[][]!= || m1.a[][]!= || m2.a[][]!= || m2.a[][]!=)
throw ;
ret.a[][]=m1.a[][]*m2.a[][]%MOD;
ret.a[][]=(m1.a[][]*m2.a[][]%MOD+m1.a[][])%MOD;
ret.a[][]=;
ret.a[][]=;
return ret;
}
for (i=;i<m1.n;i++)
{
for (j=;j<m2.m;j++)
{
for (k=;k<m1.m;k++)
{
ret.a[i][j]=(ret.a[i][j]+m1.a[i][k]*m2.a[k][j]%MOD)%MOD;
}
}
}
return ret;
}
matrix pow_mod(matrix a,char *str,int len)
{
int i,j;
register matrix t,l0,ret;
ret.init0();
l0.init0();
t=a;
for (i=len-;i>=;i--)
{
for (j=;j<;j++)
{
if (j==str[i]-'')
ret=ret*l0;
l0=l0*t;
}
t=l0;
l0.init0();
}
return ret;
} char s1[MAXN],s2[MAXN];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
qword a,b,c,d,i,j,k;
scanf("%s %s%lld%lld%lld%lld",s1,s2,&a,&b,&c,&d);
a%=MOD;b%=MOD;c%=MOD;d%=MOD;
int l1,l2;
l1=strlen(s1);
l2=strlen(s2);
int x;
x=l1-;
s1[x]--;
while (s1[x]<'')
{
s1[x]+=;s1[x-]--;x--;
}
x=l2-;
s2[x]--;
while (s2[x]<'')
{
s2[x]+=;s2[x-]--;x--;
} matrix m1,r1,m2,r2,r3,m3,r4,m4;
matrix t1;
m1.init1(a,b);
m2.init1(c,d);
m4.init2(); r1=pow_mod(m1,s2,l2);
r2=m2*r1; r3=pow_mod(r2,s1,l1);
r4=r1*r3*m4;
cout<<r4.a[][]<<endl;
}