如果不是严格要求“缓存和数据库”必须保证一致性的话,最好不要做这个方案:即 读请求和写请求串行化,串到一个内存队列里面去。串行化可以保证一定不会出现不一致的情况,但会导致系统吞吐量大幅度降低。
解决这个问题的最经典的模式,就是Cache Aside Pattern。
Cache Aside Pattern:
(1)读的时候先读缓存,如果缓存不存在的话就读数据库,取出数据库后更新缓存;如果存在的话直接读取缓存的信息。
(2)写的时候,先更新数据库,再删除缓存。
说到这个问题,又会出现很多问题:
(1)为什么是删除缓存,而不是更新缓存?
(2)为什么是先更新数据库,再删除缓存?不是先删除缓存,再更新数据库?
写的时候为什么是删除缓存不是更新缓存?
很多时候复杂的缓存场景,缓存不是仅仅从数据库中取出来的值。可能是关联多张表的数据并通过计算才是缓存需要的值。并且,更新缓存的代价有时候很高。对于需要频繁写操作,而读操作很少的时候,每次进行数据库的修改,缓存也要随之更新,会造成系统吞吐的下降,但此时缓存并不会被频繁访问到,用到的缓存才去算缓存。 删除缓存而不是更新缓存,是一种懒加载的思想,不是每次都重复更新缓存,只有用到的时候才去更新缓存,同时即使有大量的读请求,实际也就更新了一次,后面的请求不会重复读。Cache Aside Pattern存在的问题
问题:先更新数据库,再删除缓存,如果更新缓存失败了,导致数据库中是新数据,缓存中是旧数据,就出现数据不一致的问题。 解决思路:先删除缓存,再更新数据库。- 缓存删除失败:如果缓存删除失败,那么数据库信息没有被修改,保持了数据的一致性;
- 缓存删除成功,数据库更新失败:此时数据库里的是旧数据,缓存是空的,查询时发现缓存不存在,就查询数据库并更新缓存,数据保持一致。