[Codeforces]849E Goodbye Souvenir

时间:2023-12-20 11:13:56

  又是一道比较新的模板题吧,即使是在Codeforces上小C还是贴了出来。

Description

  给定一个长度为n的序列a1~an,每个元素代表一种颜色。m次操作,每次操作为两种中的一种:

    1 p x:将第p个位置上的颜色修改为x;

    2 l r:询问[l,r]区间,求该区间内的每种颜色的“最大出现位置-最小出现位置”之和。

Input

  第一行两个正整数n、m;

  第二行n个整数,表示a1~an;

  接下来m行,每行表示一个如题所示的操作。

Output

  对于每个操作2,输出题目所求的答案。

Sample Input

  7 6
  1 2 3 1 3 2 1
  2 3 7
  2 1 3
  1 7 2
  1 3 2
  2 1 6
  2 5 7

Sample Output

  5
  0
  7
  1

HINT

  1 ≤ n,m ≤ 100 000,1≤ ai ≤ n;

  1 ≤ p,x ≤ n,1 ≤ l ≤ r ≤ n。

Solution

  应该说入手这道题还是很容易的,不管后面是怎么做,我们首先可以判定它是一道数据结构题。

  我们考虑对于每个元素,我们维护上一个出现它的颜色的位置。

  这样似乎就成为了我们很熟悉的矩形询问一类的问题。我们类比一下询问区间的颜色种数怎么做:

  第一维代表区间下标,第二维代表上一次出现该颜色的位置,要维护的信息是该位置出现的次数(其实只有0和1),目的是求和。

  同理这一题似乎同样可以这么做:

  第一维代表区间下标,第二维代表上一次出现该颜色的位置,要维护的信息是 区间下标与上一次出现的位置的差 ,目的是求和。

  这样似乎就很完美,我们可以直接树套树……然后并不能很爽地通过该题,因为炸空间了。

  那这可咋办呀,我们就可以用到我们神奇的分治算法——cdq分治!

  cdq算法的主要思想就是将操作区间分成两半,计算前一半操作对后一半询问的影响。

  这样就相当于将在线的修改去掉,将询问改为离线。

  这也就要求询问具有可合并性,如果操作之间会互相影响,cdq就不管用了。

  例如操作是加法而询问是取max,这样的询问是不满足可合并性的。

  对于这道题,每个操作对于答案的影响是独立的,且每次修改颜色都会改变至多6次我们所维护的信息:

  设pre[x]为上一次出现该color[x]的位置,suc[x]为下一次出现color[x]的位置。而我们只要维护pre[x]。

  假设修改pre[x],改之后的pre[x]为npre[x],suc[x]同理。

  要修改的所有信息为:pre[x],pre[suc[x]],pre[nsuc[x]]。

  对于每个信息在二维平面上的操作是一次单点减和一次单点加,所以总共是3*2=6次。

  完全转化成离线操作后,就只有询问矩形和了,把询问排序用一个普通线段树都是可以做的。

  每次操作出现在logm个分治区间里,单个操作的复杂度是logn,所以总时间复杂度O(mlogmlogn)。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <set>
#define ll long long
#define MM 264005
#define MN 500005
using namespace std;
struct meg{int ki,pos,lf,rf,val,aps;}px[MN];
struct node{int g,x,y;}b[MM];
set <int> se[MM];
ll t[MM],ans[MM];
int c[MM][],las[MM],pre[MM],col[MM];
int MQ,n,m,pxin; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} inline void getadd(int x,int z) {for (x+=MQ;x;x>>=) t[x]+=z;}
inline ll getsum(int x,int y)
{
register ll lt=;
for (x+=MQ,y+=MQ;x<=y;x>>=,y>>=)
{
if ( x&) lt+=t[x++];
if (~y&) lt+=t[y--];
}
return lt;
} bool cmp(const meg& a,const meg& b) {return a.pos<b.pos || a.pos==b.pos && a.ki<b.ki;}
void solve()
{
sort(px+,px+pxin+,cmp);
register int i;
for (i=;i<=pxin;++i)
if (px[i].ki==) {if (px[i].lf) getadd(px[i].lf,px[i].val);}
else ans[px[i].aps]+=getsum(px[i].lf,px[i].rf)*px[i].val;
for (i=;i<=pxin;++i) if (px[i].ki==&&px[i].lf) getadd(px[i].lf,-px[i].val);
} void work(int L,int R,int gs)
{
if (!gs||L==R) return;
int i,qet=,mid=L+R>>;
pxin=;
for (i=L;i<=mid;++i)
if (b[i].g==)
{
px[++pxin]=(meg){,b[i].x,c[i][],,c[i][]-b[i].x,};
px[++pxin]=(meg){,b[i].x,c[i][],,b[i].x-c[i][],};
px[++pxin]=(meg){,c[i][],b[i].x,,b[i].x-c[i][],};
px[++pxin]=(meg){,c[i][],c[i][],,c[i][]-c[i][],};
px[++pxin]=(meg){,c[i][],c[i][],,c[i][]-c[i][],};
px[++pxin]=(meg){,c[i][],b[i].x,,c[i][]-b[i].x,};
}
for (i=mid+;i<=R;++i)
if (b[i].g==)
{
px[++pxin]=(meg){,b[i].x-,b[i].x,b[i].y,-,i};
px[++pxin]=(meg){,b[i].y ,b[i].x,b[i].y, ,i};
++qet;
}
solve(); work(L,mid,gs-qet); work(mid+,R,qet);
} int main()
{
register int i,x,qet=;
n=read(); m=read();
pxin=;
for (MQ=;MQ<n;MQ<<=); --MQ;
for (i=;i<=n;++i)
{
col[i]=x=read();
las[i]=pre[x]; pre[x]=i;
se[x].insert(i);
px[++pxin]=(meg){,i,las[i],,i-las[i],};
}
for (i=;i<=m;++i)
{
b[i].g=read(); b[i].x=read(); b[i].y=read();
if (b[i].g==)
{
set<int> ::iterator k;
k=se[col[b[i].x]].lower_bound(b[i].x);
if (k!=se[col[b[i].x]].begin()) --k,c[i][]=*k,++k; else c[i][]=;
if ((++k)!=se[col[b[i].x]].end()) c[i][]=*k; else c[i][]=;
se[col[b[i].x]].erase(--k);
col[b[i].x]=b[i].y;
k=se[col[b[i].x]].lower_bound(b[i].x);
if (k!=se[col[b[i].x]].end()) c[i][]=*k; else c[i][]=;
if (k!=se[col[b[i].x]].begin()) c[i][]=*(--k); else c[i][]=;
se[col[b[i].x]].insert(b[i].x);
}
else
{
px[++pxin]=(meg){,b[i].x-,b[i].x,b[i].y,-,i};
px[++pxin]=(meg){,b[i].y ,b[i].x,b[i].y, ,i};
++qet;
}
}
solve(); work(,m,qet);
for (i=;i<=m;++i) if (b[i].g==) printf("%I64d\n",ans[i]);
}

Last Word

  感觉这题会让人觉得恶心的只有set的插入删除操作了。

  相比树套树,只需要用到普通线段树还是比较赏心悦目的。