I'm trying to set custom gradients using tf.py_func
and tf.RegisterGradient
. Specifically, I'm trying to take a gradient of an eigen value w.r.t its Laplacian. I got the basic thing working, where my python
function returns one value, which is the eigen value. But for the gradient to work, I also need to return the eigen vector. But trying to return 2 values results in pyfunc_1 returns 2 values, but expects to see 1 values
. How can I solve this error?
我尝试用tf来设置自定义渐变。py_func tf.RegisterGradient。具体地说,我想取特征值w的梯度。拉普拉斯算子t。我得到了基本的工作,我的python函数返回一个值,也就是特征值。但是要让梯度做功,我还需要返回特征向量。但是尝试返回2个值会导致pyfunc_1返回2个值,但预期会看到1个值。我如何解决这个错误?
Here's the full code of my custom gradient.
这是我的自定义渐变的完整代码。
import numpy as np
import networkx as nx
from scipy import sparse
import tensorflow as tf
from tensorflow.python.framework import ops
# python function to calculate the second eigen value
def calc_second_eigval(X):
G = nx.from_numpy_matrix(X)
degree_dict = nx.degree(G)
degree_list = [x[1] for x in degree_dict]
lap_matrix = sparse.diags(degree_list, 0)-nx.adjacency_matrix(G)
eigval, eigvec = sparse.linalg.eigsh(lap_matrix, 2, sigma=0, which='LM')
return float(eigval[0]), eigvec[:,0]
# define custom py_func which takes also a grad op as argument:
def py_func(func, inp, Tout, stateful=True, name=None, grad=None):
# Need to generate a unique name to avoid duplicates:
rnd_name = 'PyFuncGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(grad) # see _MySquareGrad for grad example
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": rnd_name}):
return tf.py_func(func, inp, Tout, stateful=stateful, name=name)
# define custom second_eigval function for tensorflow
def custom_second_eigval(x, name=None):
with ops.op_scope([x], name, "SecondEigValGrad") as name:
eigval = py_func(calc_second_eigval,
[x],
[tf.float64],
name=name,
grad=_SecondEigValGrad) # <-- here's the call to the gradient
return eigval[0]
# actual gradient:
def _SecondEigValGrad(op, grad):
# TODO: this should involve eigen vectors
x = op.inputs[0]
return grad * 20 * x
X = tf.Variable(tf.random_normal([200,200],dtype=tf.float64))
second_eigval = custom_second_eigval(X)
optimizer = tf.train.AdamOptimizer(0.01)
update = tf.contrib.slim.learning.create_train_op(second_eigval, optimizer,summarize_gradients=True)
with tf.Session() as sess:
tf.initialize_all_variables().run()
print(update.eval())
1 个解决方案
#1
1
Your Tout
must be (tf.float64,tf.float64)
instead of [tf.float64]
你的货必须是(tf.float64,tf.float64)而不是[tf.float64]
eigval = py_func(calc_second_eigval,
[x],
(tf.float64,tf.float64),
name=name,
grad=_SecondEigValGrad)
Here is an working demo
这是一个可用的演示
import tensorflow as tf
# Function in python
def dummy(x):
return [x,x]
print(dummy([1.0,2.0]))
tf_fun = tf.py_func(dummy,[[1.0,2.0]],(tf.float32,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf_fun))
#1
1
Your Tout
must be (tf.float64,tf.float64)
instead of [tf.float64]
你的货必须是(tf.float64,tf.float64)而不是[tf.float64]
eigval = py_func(calc_second_eigval,
[x],
(tf.float64,tf.float64),
name=name,
grad=_SecondEigValGrad)
Here is an working demo
这是一个可用的演示
import tensorflow as tf
# Function in python
def dummy(x):
return [x,x]
print(dummy([1.0,2.0]))
tf_fun = tf.py_func(dummy,[[1.0,2.0]],(tf.float32,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(tf_fun))