【DFS+堆的二叉树结构】15轻院校赛-J-堆

时间:2023-12-20 09:43:08

【题目链接:J-堆

1734: 堆

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 239  Solved: 113

SubmitStatusWeb Board

Description

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAyAAAABICAIAAACBXQaVAAAgAElEQVR4nO2d308T2f//+wf0ppe9MCFpmvSiiTENFxBj2os2GhJK3DQEJA2YNUDea4C3sdWN4GYtbt7U7G6bt1be60Ql/qi7nfB+W10RqQoYykpdS6DRYQVthXGhQulnaAqd9sz3YqbtdDr9BXV1/Z7HldR2Zs6Z8+N5Xq/XeR0BBYFAIBAIBAIpK4KP/QAQCAQCgUAgnxtQYEEgEAgEAoGUGSiwIBAIBAKBQMoMFFgQCAQCgUAgZQYKLAgEAoFAIJAyAwUWBAKBQCAQSJmBAgsCgUAgEAikzECBBYFAIBAIBFJmoMCCQCAQCAQCKTNQYEEgEAgEAoGUGSiwIBAIBAKBQMrM31hgAeLVs7l18LEfI4M4SZIkyX0mQJIkScY/yhP9XeGvSS6AJOPxwl/LJBENLQcJsuRHIvHpZ4Hop9XgPm8AScYB7DmQvwwQJ+MJ2OI+AnGSBHEy/mkMryAaevduO3NEFh9RYEXmhhwj2GpGISLT9nPXxgKRYn4+b2+XSo8gsx9CYyXCrpNi8UlXOEFRFCAC0x4+sCDnDSQwRMP8KoohOoEGwRIURQVdhmoN8iLBf6+tgPMb/Qln4AM2rc0g9py3BEnmgnwiJYEhGoEOwaJ818yoou0BiBeD/YOzBM9wxqrJPOR/hhjudlweehGhKIokgvh7gikj7+sgCfyl23nZbDh8eOAl3+XiaxN9KuGe5ouTK4UFXTzkG0FzMuILsYpMEkG8SLL7fCk3Khfg7dB35255l/MOPyAWmBzM/WQoOnjft1qoHkNuk1LYYPfn+x4ZdA/0WV1v098J+wYvX3/y7LfL330/9u6jDthBl0EhNrjCFEVRcSIww9f1nmPBzZ3dBZDBuby9m/8W2+vdIOS7v6N3uq0S4ve/O/uLdyV/RUUD7jv5Wlwx3SEyYZJLG+wLeUoBgm6k7z+ut1upDyK+2/3XH3t/Gzj9/ejKh2pw7LaUh7z9bnAyEON9PkDi0+MeP7HNhy/DXMDbGkE09G4bo2LiBaKR5Jxwwy6DWGFwBfM9TTHfKY6PJ7AizyxquRbxxdIfxVddp2SCGouX4Pl+dmX7J6+2qdU9dzFOhZdBeWa0mASGaKq60acej+eBTb+7qtvx1PP0sa2lIqu5cwSWqM25DKhCAoslxcDSWP85cxbnUF8xkjM36x7bUb2+sUYhUdQ06jNpqlEIc/QN4Lc3CHUIFs2se1qpgC2vtXqHAis8aVbLVL3ja4DijI8OW0elqN50w5EeHe77Qkz/31yZ+uXyw7dk+jXFY9jVwy39U2vsATSKITp6SEq+l+h7fJVMvQ7yT9/0a3x+0on0Hq1VCAVSpd5gRlCXF49SvJ37xYilTdt+dcrP+Xw5FOVUQhRDdCK97XH2ZPfYphdljCMJDNEIikSc1YpKuFGZoIWmQKi2eiN5xuNE2HVSrLa4l3jHRB/acaCI8Sv9BgvciFnJUBRFUVvPLdWyBrvvDdohlZ1yrX5EawR7UoxiSENVt+Mp82rU3eiEx/PAplfveBwHEU//Yb2+qUYhUtQ08XRv/qlie707gSEaUYvt8dOsBvfApt+Te5TbSfmCE701QsEuteVZ3mEw6DJUqy1P+FvcK7RDUsRglXiBaKqLmH3ZPYvwWmqEDTdfvUHbpHuNruVySSwQXZqZe5+8GmcSiQY845NZK3ymO1R22BwcbeW4YaoX5Ryut/z2wyLNxdnNcA5bQtYKHETwmVfJh+P0QRALPHs0ifEu2nPBJ7ASYddJ8TZGRbBgb5BrkBeJjJad1GFbzy3VVZ+9wIrhzi4ZZ4yO+RCtbI+iUmOeDGe/mrDLIN6tM5zN1h8s+s60qoTs0XabZAksri0qEXadlCTXpikrAksW3LJ17BPpTDdQFEWvmnTyyo7zyTZ/xx1gNyPWLAKIwMRF/a5DlgeTyZY9ZjdoMhoQeOM8fdKUtxJMhn85A1sUF1YXTbvVsuYnbp3rECxCj+DJ8ZrpBsUZmfIDorP9taKa3okgyDSzPUW7qzjj+HQgucCijZddTnyTeU3ruMtYLdQiWAxQFEkEacXDEVjG/w33VUm7nPiSy1CtQWbeu07JpC3dx/eLdN/9z/0S58jysMsglip13Akriy+UksqsrphbGXBHZ/5qiWGIVlhdxGC9wxuVDKOJz1y+1Lav1urJs+RNYIiGZ6CnuWrSqT6QwALLzjbxYbt/i4rN2Vuq1byDyV8ER2A1Mr0v/WqCLkNNZj1sBZz/Mpj68vVv08nTzjdZZWLXA8trnqcZbKt35+71+ZeR2yYenvpBLao5c+NCm6ze6g3lfplRDGlgDbOZ3DDpKj6MwAKLzrbqBvsCoCLz9naZ+oepcFk0fQRDGkWqvglm0ZhZvZGn5ioZn6Ut13ie18gEFp1tVVrEFwNvbrdXCyVKHXuE0ykl1VbvFvtWIIYhWmbczr7puse8P9PwDNJtLMXhfg9r9s9rT01RzIBApesq4rExd22sUSRtWsW+4r+1wIo8s2gO9k4EAeF/8XYDUBRFkctDRrmqb+LNEzP9X5yfFDVh5JULJZAlsJipIiWVHFe7tbuyjP8sWTCBdquTpoWU3YtlsY8ujA3ecbmnmG82mR2DKDo4vvD+iUlezypm0GXQtDkXWW111Tc+PpXXJTA1NsFnDN/y2w/vMrjW8Qena5ssXrqV5m2yWXUOlp1tFceHVuNUeQQWRVHE7MWvWmy/rQGK7crMEliZS6jotK1WrrZMvXOdFItP/Dr5k1ZUx5Qo3X+yLFjvX9pbqtXmQcfxavWZH79VVbfYp2d2KFD4u2sUQ3TCbHNC5hyWE7A82qMWMXoxPzu7UamQb0d6Dohqz3uJOIkP96jrekbe5rAWgy2vtfojWLDIZWeHSNpsvulA0Z8vGQ9pj1tuoijqGLB9P+jLZ3L7EHAtWMz0f8OkE+3rsN1CUaS7Zl9mPcRDvomxAt17fJzPEwf89oZdJ13rAdfpem3S2JOvk26rdycwRMPf4FhzWNkAJD7co5LXWj0E2MRHzqjVZ0bwXI5Cwmup++stWGDZ2SbaozdfQ1HUcelkvfaY5aYDRX8ZsF1AfYWUQF7oxUzSbscWWPFV1ymZtMuJx7J+tB2BBfz2BnE7uhTj+zmIuM/uznbTg9Ups1bEmEgyfgVWR4yyyvaMmBcQwycun7UNYYs4juP40ivnCVmmaPsgAit9/0Vnm7pz6B2g/r8QWJF5+z+qu+4tgwiGNArlZ92RBLnk7JTX9k4EAQWi2LXmqlZucNVfJLBob1qTTikV0ONIs3l41JblIpxAu9XZb7oEFyHhvXVxwIGi6M0+vVQo0pmuD9jM5l+84Vf2BmX61YIFe4OO32daMmDLa62utno3Xtmb5dL22zhgL7+yK0HfVKMQCmgrzuETzjeAuUKH6ZtWZmXDDLXf8BnMtkHaS8h1EXKjB8iV+9+19d75/dcTYnGb5cqphh4XM+fkEVjheMT7U/sJi/lIperU9xbrQ5wswgJEBrE8gTK5BdZ2dRuIzvbXCgVFjCM7vFGJgPVZ5IhMlZrh4sTsleaqJvPoIp/GyuWqKGjBiiy4HM7JNwTIKB2I+sd/foCxthgkg4EcN0z1IuZGI77V1852hbgDfcXIuKr0jPv67fsSd0NsH2bp/IVSImRGkV7n6KUsF+FTR3dVIW9F8Ww9t1RrLd6g394qYmZfctnZIebOjjvq3X+lBQsQ00hztapnGKdfHFifRVqr6n8Y5ddYQZehajsWrNiC6/qdSToAKd2dE9HAk5+H2PJz1Xd/EM3Qx4P3fX8uObuk4i701RKOL71Cu1hucX/g/Q6j68jlIWNSSKWrF4Qnzerq5gEfX9/O5ZpfeoV28QssEJzoPahm4jSoBIZo5Gfd6aUIuezs3GOayHbOguV7XYyQYk27YHXKXCdrvoZl7AYCpB9tk1a2oQskRVHU5vxAk7jtf6+nWGYtnVIiSHoMckYk5xdYSTtZU41CKJQov0hfauu5pXr/cdPXzYzPYZeipjHZ7Pn4OwusOPHqlw6ZQm+yWvqO66TVXUNLCbojJd9xeux2vWa/JoBP/mzn7z4pHAO273casUTR0bWCfC7CjDeddvX6hi6eu+X24zj+1jd0yXxxyIfjOD7vtv/74tAM4woOZTa9ZWebiD2bEl6LttryfCv1v7s6nPnjiYsnPNotP4Rg4VXXKZmwEcEiyU94KyyCIY1CgQ7BomDlibX9m0F/2G//Ut49Sj9qmSxYSTIjQZbcFjUzbGU50emR7pbd7nDcMNWLRPWmGzcHBuxMEGtOgXUcnZn2TE26J4fTBkUsMIvohMrWM5kxb/1jSyAWcA+O+EJxKuwyiJUmdyjHY6/67t/N9PlSjLxmHMRZA33+0Kiob6B5j0BQgsDa5o1KglyasLYwe0rA0lj/D/1jS4Dup7J9rRdcC9ydCgUjr1kuXzaJuYE6iZwZ0FNvkB6gJbW26VR5QMg3PDQ25Xn62NYiqup2PB4aRO8+vv2dOq1NP5DTqmgiEya5MJ+LsJjFdAm8H+vWaBHf1uqIUSbRIr5Y8pNsQ8e2e3cCQzSc4Mi0aN5dvtoGJD5u1SukzVdmiTjAx/rNl8fwGKPyK9svuF5ltZ6CW3lmArz7aeYH6oTJDs4aPfxoh1RYb5tNLm7Bqm94eGwqqY8dD4YGB+88HuxT70rOFOXyn7CI+RDtbi3iiyUbc5wjOrNKE3adFHN8fCmLNs8LpUMqWWIiMmGS17KW9CG3qSZH1H8EQxpFWgSLxZmCxzlrMO6XhbRYBIvOtqq6gbk4a8hfclvUgjqL+w2O54miLsaCRcdXiDXIiwT4c8J67MTgwpbf3iD/Zowu++duwYrh4z8POO64Jh4gbVWyrnvL4WmkWSFtOnPzvpvVGcYd5s56paLGeG0SZ+R01m4+ZmxFOQGXqdA/QASmp7EAr8mYSwCbTo34YHXEKBMKRDWdVz1rgEpgiEaqM/SZzebTrcoKqe54n/msQbc7+aZ523STTinNMqU36ZTSzPYRW0LbRQKB6Iuvr47TloBEeOwbObPozGGe3TZg2WVUaxFfbMtn/9Y6OLuy6jolz+WKivkQbYVAsLfV7PStziBaiez4jz/UK2pPfW/+fhgHOxZY4I3zBLOAOWzzRCK/D3zzXd4Au7PnhuhaSS4l0ZTAoof7/ALrmP3JMIo6bpqbpQIRvdIddGMzySDxp2h3lYAOPc6c+/lNQYloYOwKOpNDym9X9zCG965TX+4WG1zrhMfa8BXifZ9bX5dwI0AEpr1F9gY/5p1NzkaAXJka6FQLUzt2MzbpABJ/ZK7fLVQ0nLp4e9JPgIgP/d42UGAdlMSOWP7tCrBM+TEMSXt7M8bTrAkv+SLSs1pszt5SKZHs4rdgbXfvy3brjd6yIxDVHL/qeQ+oKIbUS3XH+8xm85lWpXC3znDW3HdcJ80O4Ns28WR3Jnz2c5bBmbXVEWOu5dN2e3cJAmu7wy9Fba54BjqVFbS6orj+o0189Id66S6F7uuLzt/8BBnxDRbd4hx2xPpvl59VqgiGNIpS0cDs2ZdcQNsUwtr+WU5qlvSAEJm3t8skkgp+C1Zq2/I2SInFyfvXLjtGf0s7T9x3rJ0nL43QQbrZlvWSXIQgNm9vkQoFApaY4Pg0Yj5EeyBzeZleO03dv97veDSVnogn7lkNXZeGpzgTMU3kmUVdITOOrC4728SNCBahqNja9OT0WvYrpitZIChqVm2sUYgF6d/SKwdRZev3Tt/SS6RRKOu68MMhce3Jf5sv3MdjRQus7Gj67axXP1aQO4hhiFZuHPpz3tmuEKrOjCzhyVkzyf3Z4OrM7bPfXJzK3itBU2jFkHiBaIrYhcDdjMCMjAJhhURSc3qUvdObd03M+xi8WjvrQ7Bgb5BJJLuEEkmFtAP1Ryla3sm/tPu3KLDsMmry7xkuERDxnKuqOsdEF8Z8iHZPjuuDiOdclUAgEOySSCSq08MvHpySCQQC0VHHo4v0FFgmCxa7TnKZPfiXnvyjRj4XYYICyy5jtUAglDYj3rUY9zu8XYgrsAAZwlyXupRCcWXL1Vn+sJ44EZjJzuJBURRFBrGcxaGD91sHsAUmdodcHDUfkgoPdDvncoSTl3CjUrYrJkcTchW792Nz5S4p2y+TvQuaXMVcyKn6rxAskrREvnFb6pJCZ+kV2iVh/p0F26ILllmbFShuf+Gf8FK9L+pHO6SyNtPXB5ImydRyyGw2m839Y/i2OtJ26i1ZFoFAIJRIJKre0RXWK/ow+w8oio59rjF71uk/MKRRxL88237vBkRgmj+ry2YQ82asTLYz/AIy9OLej19WCnfXmx+ljDRZfROQIcyFnKpvuYrFANPilp5Y1FUdqA9ntPX+5L/ztri0tS/1zKnZl8duSlHp10f60TZp9VHTMZVQ1Xqmj9lixSzFzWba5LZNwj7Uas6vGh3nOyqz/cvFC6w4gaFGlUz17Y9n1GzBQS47O3a1oEuASk7TnK24IOIbPFfg4W7ZOvZlTX/xtYk+lUh95Mh+JsA08sySDDLjvmL+DA3sUYVDUs5GnpqrRAKBsEJSIVL1Pn7xq1EmFAjkbY5fL2nlasuzSLECa09W+8neLV6YjySwYnP2ltquoSVAUYDwz70r3lcdw92DdmbH/gcwyVIUBfxoi2Kvskokbvvx/In2vlsTTGgezl0T43RgRyLiGzzXP4YDto2aHeROMxckt/Cxy6ycCyDitarFDYZj+8Vfmf/dokjGRTF2pk38drvsS7u/LOFNSWI+RLuvDV0gaQd/rn3sYNllrBbV6Q6KD/7o6G9vMY+88iDaCmGD3Z9Ydhn3SttvL74su8DiC9zJZ/IpVWDFYxiiFVUq90kqJBUi1Wnn/HJxAqvO4n4dwJ6P3bt+oeeISrKrstmMehazko4mwg+/qyu475BZjOlND1mdHKzPDhytFB04PfoOsIOjwTqGfp2Vf2sHNyoFQHisWk2rbTQQ5dRwwXBmtmnNccNUX2G4NWw7mvlkxwd8G6yf0PvFUuYrKmtBwkx4mT6v5CDw57CxsroN9c2mf/IxXYRgCW0RVyr3VYi/Mp//Z1ef/Uk6m8wrtEOc9IbgOI4vvg6slikIIIIhh2RtqJ8EYPlelyxH1oBt9O7wI1MdN8NLDhrrTI+2G90dJ7zntVXttjE/u3MVFQGdeIFodutMV5PmNJXhv04bZ+vaP6752LvhMiK1Uxdhz7603bQxwwrICKyFEaNK1oa+nr2k+XAuwgLlzRYKJViwADHz8+XH+Cb3OiBt+NyYtenkxpHSk5vl8OUxqw5FMgQ+hju7pMLDdv9WmYLc46uuUzLRft3BPZofb1xpbz874ptBGoXCw3Z/hNkZsDj9ebsIU9GyPY7RESd6EzGfHwps4GOXs1xC5/rHlrKSoi8623bLmECBRNh1Usx2EU6NDU8Gtr1qoG8QwxCtSPddXyvTHCNzrp8dKMpEowsEAgGzRwlFURT9+RGWtmGwoyzZaRpyhFiCgLO9Uma8PXFJJzaMvMeQuqoux3yEEV7y1jNf126rcRcoYMRrVcuNv87cP63a254jmhDgt9ule42/XDmeXGoD/Ha7VCgQtaNLWzEM0Yqarty2fhCBxRkdsvc6BZwnUuKhRiFMm4yP2jzr+QTW+tuhrmpZ16Wrx6o1tsfPkCMy9dmrPxwsQmAxi2xF7VcmxOmeXys0HcYJbPTO+DxR3DIARF+7zIekwgPJTXmcpIKxNS/SLK3gC7wo7UalA8joJrewRQusDAuWwRWmyGVn527jyCqgwBLakhFcSO8Xk7ECMSm+8ZSO5GBsvfTTJEsNon/+GQLsn3xEgUWHp/T0fbWHjiGLYI9+RtGkh1ogEAil+r6bSVvEz665HYeNpu78zKJWdv069eh0jYxesGWxk94NCOzhnQkm5O6DmOLIaDSrxRUrsNgWrAMGV5ACi862GqNrGVCxJbR9F7PriGYTHzmjSucaSF0kc/aN+RCtRNqG+rMzX0SDeIhkmfo+GYGVtqKlc/ecaVXx5zvkuU7YazkoN468X77XJVPlDD/NRy4lRPvv9rTY55hpOvLMopbXDcyRZRFYzJR69cbxZMcHAWe7QiCQtaB+EPMh2t11Vxz/+bwFVmLO/g99R7fZNuC443J7sUCQINnDMY4z9l6+QTwj0y6PwWPQvUOBRbet4dcjHL0PksaPCoEgV4Ii9oCe2RTCLgN3kzC9Xm9EsNXkN1kjC90sOCuncgFCXqtOKBBmjBoZhL2WOpEWwd6PMEMJWHYZ98qOmr6tlastzyJgk9ggy+0i3FoPEevZo8OZViUn3QAZIRiDSuaIRn+eOwbr5t2zKrlxaBlnXhOIhNZXvZaaIgSWumfoJR4q/picKIbokplg8g+7myven3tqZcLKowPpbbPZWZvjhM/eqayQcqfM4m9UPoq3YDEW3HRWXrDsbNtz1h3ZXELbk24IiqISUf+9HlU65oZ9Ee54Gp221UpkXfeSPZDeNvUv5wOku9PmXttg5a1orFHsYjYT0XF+Za2GfESeWdQqo2tmhPseIxjSKNqr3CcSCD5UEtQ44T1fKxQIMmQomx317gSGaISHGbP6h/N1Zt+0KIG1R2974PF4WBlck5vggB9t2duCJv2lYMM/9K1KuKcZmc5wvvOoDXpXbxXtb6EoutRas/Mu0n3C6g7GWXkrmmoU6SRSmXmeSofAXHmPQsjjIsyOS6bDpIoVWLQRS9XUpJLxzxGpBUNJLkIQm7e3yDRHjuwXyoxDzOJqK/RuNQrKkqYBRLxWtagRwd4kJ+L4quuUTNbe9+1BkdrqjcSjRIT83IPcswEkucGtOP5BHGx5rdUCgYgZmss/o4DVEaNcZ5sNcw2qgLacX7h0rFp5tKtZa+LbKFGCwALhSTMd8Qd4Gg1YeXRatUsg1Jqnyn/0BCDmnN0HhIJdqp57fj6nMlh91FOlNLqWATOAbqxN9KlkHah/g51/pawCa3jR299+dvT1SGELFosIhjSKM1aluV2EQrlCoU064FLrm0Vnm4L+d9ExWBkA/+CJzp/cnCAosOhs253cCse3prSndukAcunX3pPXPBnHgPAeiwFI3DfNaXUl3Kh87EBgUWDZZaxru3q9T61irVJia97L7e1Xsw5N4h1P44Tv4V3moB6SCDx3mg5Ka4yICwuRIPMnH8uCFV91nZJrLs5urXDeI5Mi6IrtmFh91NCizbkXbAeA8LzztEooEKq+HfJv8MyNO+rd5LKzQ5Taxs+T/PkXL1H++t6BwKLA6oix+uhVx1k1O5aIfO9FjrVz1BWVwywE1n3Dw96VTYoCJBHwOntrpFoD4sJCnIoq73wUfeudzJcQjT/HR+l5sPgFx7rHvD+3KQHE3k7nTcbIk8YIEB5rrVzVO75Gh15lZgAug8ACy6M9GrlxZBUkd1yujfeq9rahCzF2aq7/XwQWiK699j5EfzJ1tJ8emntZjMACyy6jSn3qX1+rlJ1OP/lhluxgM7oJOM0xvjbRp5K12+f9LkO1Bnm+yJ/yrniBFZl3dFXK6LEsK9Bk7RnSXK3q+e/EzaPSnMvQ7REn5ofM9Xsktf8aeTmJNCuk9eaheb5M13Qu6LDLINb9NHKzPZXCJOIdOHvVjW9SRQmsKIboMrao5PiO6ICuqf3qLEHy7MfMnTAThCfN6n2dQ7lilzkWrC+tj/8gAEVR6x5bF50BBayOGJM28G0JLBBxn5VnpI2hKIq2s4qSVha+zDQFdrQVee7Yzm+0LYp3ERpcYYokcGzC1iJW1BmdbwAFSP+tZpGQZYIq5iI8gMDtLqVMkpZW2T/hFViAxN0Dps7m1q8vjvFm8CoLic3oFuC8RxCc6K2VtdjnadPR7NxIT526rBoLEH8MmQ9JJV/0jkw/R45IpYfMQ3/wbI/Yfu8OuU1KQcr8wIQnvmE1uJ1snctJ0QKr2uAKUiSBY6M2/R5FTbczsEVRUb+9VSRgmaCKuUg24I2zSyORpKVV+tlKFVh0+P8OV6c7jsHKeR1ao4s0R483ylRfo9g2TvvN6rmk39lZnTRRx9N5glJPUaYYLJIETMf/6e5/2yuTXpqwd+BHxL1E8pY3m7+zwAIR7+X2phqFVNNqQpxuLJh5qgkDzyAeD0/9oJZ1OfEoMXulWXbA6PC+HjrxYXwi7Oa4iU+c11c2Wj2rLOPHJj5yRiU7ZL73gjW48wosAnPa+gw6KXcajm+EwmTGNymKiq3NOowqGRNtwyR9STqPStuVIxBk1EwiGvS5LnUphbLankGMNhUwm9Sqm82OCd64otR+mY2NbPdY0QIrdxKp1HcYHVlUDBYD+Xakp0bWYp/Pme48U2Dx7C133DQ3p85rytnDIxMmeY5gYTI4ZdFxTWj0MVDKhiZlVb15xB8lS18GFCmwdn6jbVFAYEVw39TYkMPWsU+oqGlq7jRdcvzP0sy4CKOv7/fqKg8cUKq/dszmST9Bk3/B+s7zyLfGnc4LCizCazXZ/VGKIrzWb8q8g4QL6z2SSxPWw5Xaf3vCcVYO27cjPTWyevM9bJVkOkvxZAYmRpd9rp86lBWS2m8GmRmRSWdQ2Wx2TLwKZeue0ns3wG+3y1RNTSpZ/fcu/wb4RFyEUdw3NTaEnu+orFDUNDZ39F5Cf7EwFqxE1H+/t3bfgRqV2uiYXSsUP5Jv9o2980xkX2H7Ait7YVYSGY9KC3qqWIEFNokNku86gFybQXsOSqSHzKOLJFifRY5IJQd7bv1exAn3bDLzRBIvUON+ETs/Fvmnb3qp5H0MpWZyTweTsOCUl3ff+mObXiRLWkMz4U/fl5OPYcGKzD286/FnLK2zT/z4QinZxRocAbnk7JQpksFxcQIb7KmVV0gqhJX/HBj9zePxLeTYiLstks1xHZ84d0imPG730WMWe8iOrXkd1lszrOqOBtx3k+fJp5pCDB+7art2P/dR8HQYzdWZN0/R3kapcG8b8lu6NdNNXLjfiArV+UMAABuYSURBVL4gAEkEizhcPMN6QYYWfh+7d91iqFcIhZIaIzLuz6yazRXvoLm5WigQK2r/0W2+6VnjbOznFTdEEF98af+HqNBoAsKT57605T0VGJC4+67nPd/oQBLBd/hLe6v4cMZECKJB38ilDo2MG7LDgfBaamn3WVYGNY/HMzli+1Ka3s+Sp4cTmMOgFOaa51gBm3Rxlpyd8prTo3hszXuzUy2U1BzRK4V0VAQ7nVI+21IxAqssN9oWBQRWFENaa4/2Ik43xpzvSC47OyqOXnl050KHUqYyohgRwSfO66XyGsNF5/grnuPlwHrgDz8eeG7vqCou4Sr77jnODmIykhNe61l0KfZXCqz1lfFz9VXKTrsvOzacfO+99dOt2XVAAZJ4X0Lvxt8TJAChBc/Y3WsWg04hFki0BmQ8Y78nBciV56j5cKVQIFTUHe0+d82TOjy49N5N+p2dStXpRyux996bx5VCWc2RQ0ohnTqOne+q/EasArNv4gXSqDtqQpypE0XBorNNffTq0B1bp1K034i+IGJLE9YWqURruPi/8Xm+Fhd6+0dgKTBj75CVlpks99lBuROFU/HwlPVLa56zq4tU2ykrS9BlUJSizlkHJNOCY+QNPu26aW5XSXZVNv/Icmts4hP9rZW7JDVdVtebWKrIxdwjlXyH8E8NDo7nOOMIEMFFHPe7equEh3P2RxDGXy/i+AzaWcSAkHOASk4o6W3pfIck5idnlnl+PoUYLIppT+z+zKmj6AxSX8ndRUWuzbudiNnYqlNKMt6sPOPwvu0AIp7+w4f7PZF4NPByLm0QLj6qo0itTSXLfml28aG19/LDhWyH3SY++cCd8wSuAoDloRPaZoP58h2PP/fARxIB70MUsV7zsPZw0fv1+I7BoTfWCdVdt1/lXRLGV119x0pokByBRXgtNQJhZb3ZxXrv8fDUD2qp1oA8ysoeni7OsrNDJBAIhDU8h1oyZVvD7p83nnuSKm9xS6j8bMzf+1e9bF/bQCq2Ixaan7x37UKvoY0+mqS4VrrusR3NG5Rdrhtti6JchGzoeKzeC2YrK7cFIEPYqP3Cv128z0Z4LTUCgSAz9r/Ye+Xtd4DEJ5Dudn3zP83OFyUtRksn9R43Ar75UPY2tJ0DloZONOoNZuQOZ8ma8aVk97azl0+l9G4Qnf+1t76ysu3abCr9bOiV+951W6+hlcn0mEbEtenulJL7Jh2P1Wc1n0M9eGp5Fwtho3brJRdveqqt55ZqkUAgZpWx6Gcr1dkHll2nz/CdJFgK5ToGgLnOW9xl6TRaB3myz1AguugZ/N/kSvErteKnP+bAA4FAVnv28UrOZlPKgADeOE+08qlbWobuUnb9d6HwMa/l4RMRWIUBxPK7Yto9iIbefZA4gA9GnMBfY3OLH3isLysgGnpXTNa1RDS0uoN3kYiGlnnsL2z7do7nI4NzHs/0XLAEQyYg3r32LwY3drKxK77muXunsOcrEQ0tby9t3V9+o48Fbc75e3XkzwW+3g3Wfh+8M5PlkOX7aRkcCB8Fkgi++yAxi9mAaOj9X3KjYgAEvvBqx8cm7uQBoqF3BdtMnHj7amGnQ1kiGlr+ixvn30ZgQSAQCAQCgfxdgAILAoFAIBAIpMxAgQWBQCAQCARSZqDAgkAgEAgEAikzUGBBIBAIBAKBlBkosCAQCAQCgUDKDBRYEAgEAoFAIGUGCiwIBAKBQCCQMgMFFgQCgUAgEEiZgQILAoFAIBAIpMx8CIEFyPX1jb/hWQn8/DVn75D49LPA3/GACQ6AJEmS3PZxM4Ak4yBOxv+CioiTZHwHT/oB+JTbABkO7egQoQ9HjvOUIBAI5GOTS2ABEp8en8SC2xAWAB/q3Jc+Ov4DEsOHLGdv/b5S8CETLxCNvMG+ADI+Ke7A2jKezJqT+NpEn0q4p/niZOGy0OeCXRv2hVjVG5u/f/n6kG81149zHuyaj43Xnklf+qhUEAs8e/jI+zbfMZmc05pLBUTcZ+V5zlRnDtcrSBGCmGkS81srT69fecJ3yGhk/taJxl5X5rG1EWzgn43mMZ6Kpo9hK0hOLVBSG4iveW5fG/KF0l8EsYUHlwcyWwWXTdw7MYkFSxcj5MqQQaY8bvflP2Y1HvKNoPkYvM/fRKMYohM22P0g4xNBUQ2p+PPXP+WOA4FAPkNyCawtv/2wUHbKtcoZrxPR0CLmefDz0ItI+kMQ8fQf1qdpqlEIBVKlron1mf6wzROhyglYG+9V7RII6yzeQod2Zx88/nEFFs9k/GLE0qZtvzrl53yefbwluezsEMm+GWOd3w6WnW0ipckdynVD1nH0MXzssjmbc4O+SOYEsPXcUr2nzbmYmici7rPyAufGcwTW1nooAqg4EZjxsJgO5DzYutDR9PRx6AUp4n0xTWIlNm9vkSpa7HOco+0BfrtdWqEy9DvS+uC+9+WvRhnnwzvuQJSi6HZSxKOlKmcnbQAsOtt2y7pHWe2eXHZ2iORn3ZHcszhYsDdIZcYRrpoA0dBbzDPy3yEf63oRj43bpYUS5Rf6jC7d78m4XY6mZTabTf/UKcQCgawOmeGTKlEM0YkNrnDmJ+UWWJ9yx4FAIJ8hOQQWWLA3SOWnHL97PB7Pb2NDg3bEYjK06pRSgUCq1DW1WNxZogaQfrStstHqSQ/gIDxpVsu1iC/G/fKOAatTZq1I9c2NS/+Q1Z73ZlvLipzwCs7KYZdBzBWLer1er/+Hxb26zYfPeU0OXygllRm6kKINhFVy0wRLrSbCY9/IeNQw6xtp4RInAuM2fXW95d4UI3imJuzGSu5kBmIYopU1d585mn4cnVIiVNSwnzo1xSbn46YahVCi1On1en1Lx5mT+sp6szuAITqRznQDRR2XDCphtZFjFeJ/zuLIls4l/zDqd/a2m104225ELqBtB5qR4dvdSmnbzVla5/ifOYxade/w89vd2vZb8zGQ3z9VoCw7aANg5V6nVJUpC96Pde/jEU/sX/ntDcJ9p9BJj8fjmRobGrzJ9GmJUCBR6njbM7mAtqm11qfhdJdenTJrRVoEK94eA9ZnkSNS6ZcXp/5k1VSRWjmFOIeKCroMlVzlp9fr9XruGPVpdhwIBPL5wiuwQAxDtKIvbLNLXuRrg+mcbcDhdN216feobTP5pBJYn0WOyFR9E2v0gBWZt7fL1FZv+YeSTXzkjEqks3pDgHw70lOn7hnGOY4VtoVg6YlFXdWB+tJGgaUnFrVEbXmyVNCvFHYZxHUW95ssZ8+77Ud+FGkV46gHkgji+NKUTSvSmkdf4TiOvwtFAUVRhNdSI5DqDH2pZbUV9YUpamNhzOl0TXg8nqdod5WoyewYRNHbYwtv3SYNa7pKhF0nK9qcmapnY9amk2dO2AkM0RQwKqQsWIDEh3tUMtXpRysgZZ+ILaHt4gxPUNbvyyuwwBvnicNZM29KuOxS1DRmfEZPe2B9FvmHtmcYJ+nJssuJx9gfgrXx3tpDZncwf7MuQmCV2gYASbzHcf+UrUGkNo/6WU1g67mlWizVHe/LaVmJYEijSHNxdv050mU0mW0DjjuuBxf0ooM230bu28eJ2SvNstreCbqwIDZvb5EdLGwzTkG+Hek5IFJ9jWIc9yLb2/vGbakTd6Cv0p3rjdtSJ1Bb3EsFu1vQZajO7MhJUj/4G3QcCATyGcInsMCyy7hX1nUvc+DgNcWDWGBykB1lcbNPL5XXdv/kQFH0aneNUMb8O+1mYQeObA960K/pGXlLD6CAmEaaNfXmR1yNlX7MN84TrSecb0CeT3LxIVyEqWuSQczzHAtu8n8tUz0kMEQjVLWeYWaDPoNOKj7pCifA6ohRVt0x8JhZVz91dFdVGVxBigp5byEDDhRFr5n1ewSietP1qzazxe5d9tsP70p7ZLb89iN7Lc/ZvhuwfK9LfgjBIhQFyOAcc2G0u6qqG31K/zUT4ImxSwqszbcjPTWyNtRPgrQDKPLMolZlma9AbOHRdedvfiJOsUUJ2AiM/28IIwrUZBksWBxAdH7I2p9sS4DAX78jSLCNZlCswCqhDUQxRCdUtp5h1MBZg2632OAKU/FV1ymZrHNgYir9pjJvTTeSrqGljMrnLVQs4M7o0tfMeoWk9hTiQFEU6a6RJP+dYiRX4BcgppFmhVR/fgLPUTqGrYDzG/0JZwDk+SQXhV2Ef4eOA4FAPkOyBRYdbFtj8XLmNn6BlRpEiiVPAE5RbOIT5/VSRTMyTYAYPnbZ3D+GA3oor6psveBaCLNUVDFxxzwrY0AEplMP/NimF6m70YlyFiIWcA+O+EJxKuwyiHOHgIBV3/27TIhP1oSd/JPAkMYMl022dACLzja5IP1bsOW1VldbvVsg+b9KVsgIRYF3o6cPCJnvJ8Kuk+LKDht7Tr1h0olYE3PEh55jJq8zrSqh9IujR1RCgaym41uz2Yr6ljFEJzbcf+06JddcnN3i1Nzm/ECTMBk8lC4juYC2KYS1/bP5t9UVFljcCDDm5YEFe4MiY98Dp+6JwLTHt5BqJq/QDo4hc8H3LG/AeAGBtZ02wIlVSv4Z8yHa3WxHPPfWIDjRWyNMvfEUvAKLDGKldemciiGBIRpRh3M5VyUVt2WhQP98YNPvrup2PM3dPz/djgOBQD5rOAIrTsxeaZYK+QKSCqwUAT7Wzx/gmjK8p75KBKansUDhoRXH8QA2nR4tyT89A8eUwj3NyDQBKG4kLLk4aj4kFVbqTvU7J98QgKLCLmM1K/KhqUYhFGd6hb5QSnZlFyqBIRpRvelGxjo9yVWTbneRu5YKw28XSUQDY1fQGc6eAL554sS96V/apHsNd96kdUjWPAGW0BaRQCA6aLz6hDHMhEe75V8ym/UiE6bdX6Y37tF+Xomkgj1PcBwcnMdmCVn/1ECnSiZtRpKR2suhaARDdOLjVwd79lf3ToQ5iibmQ7RyteVZhFtGQPrRNqmk1jYdpSjmMQRZcda8nr6mGoUwFU4eTUWAoajjhqlexHyebs/Ab2+sbPwxMwIJhHz3Uc7UuK/DditjU5w7EKOoZDhRVkBVduQN82iZ4UQltAFegeWcRjukshN3ltIewYymQodAsePrC9w6VQVLY/3ncnXpc6iv4J6VwlsWjDWs+mmsUYgzK6xJp5TyPHbiBaLZrTNd5eue7FfM/xifUMeBQCCfNWyBRaurCtVX7V/wLLMKCKwEhmgyYiZS+NCOA1k7+IqPP6dno1gIu/djc7VQesg8uphc0WZvNYqFMBdyqrmFN6w+MmGSVxazlzDvxFDCtvDCcAdcQIYw16UupVBc2XJ1NjN2jWeeEKl1B/dIdZ3H6xtPj74D6UKx54ktv/2wSCKpEFZIKirb0AWSor3Amgb7AqDiq65T8lRcFFjH0K9VsiM/3exVs+cJJm6dLROyW0icmL9rqpVLanuds/6kukqkZQH53osca2fEMfOTVdcpmbARwSJ8ZYz60Q6psN42S1C5zJHZ0XVcywdblLDnPMJrqREbXOGcG2bzv6mMN8NriVlyW9TiLvRVdpfINJqW0AZ4BJbowBcHpXt0xzvrtWdHV0huNdLqSqj56midqFSBlXiBaHR80YdLr9AuScamvxyR5nwSM0fjoSgq5DYpi9pLmM9sySNrPvmOA4FAPk9YAguE552mltPD+PsRetgFy842UbH7ehIYouHYw9MmH9V2omTYgJDX2ljVenEswM5gWvxebvoRi03W8NcKrDqL+3UAez527/qFniMqya7KZjPqWcz2jCUwRMOasJfcFrXo0JkL18dXwvP2dqm0A/VHeYoZeWZRK5oMX6nEbT/++4hU2uXEY7SykWsRbNPvbFeyPGVxwnf3+tjiZroGilqIg+ji5MAxpVCYjrPuO66T0nKWJQtiPqSuJSWnQHjSrJalzFdUds3TjsI8e9YKuwhzCSxy2dkh0iBYdNqmqcjYXBZ2W1q4UkHfVKMQlraZtNiA/RLaQBRDdKxg8DduS52o6ZsLV56sbM7ZWxRSJugtfWtAzDl7vjo94n/PFJxcdnbk69Ns03XiBaJRc4x2KStRRYYSKlVi8m4oKTpZw3YE1ifacSAQyGdMpouQTqLNPwps14K19MSi3lYYMgdyM8odlD+owOKdGHAc96EdVWUVWIxaVdR+ZUKc7vm1nBErGKJh2wN0Sklq/iYX0LZKZn7NKGYMd3ZJZaeGJy5qxCdd72eQOk27448YRc8fyq/OHFPLeYw3Cc48kS+UJBIYQww1ckntVx1fsJynrDwIrIkziiGNzHeY/WWpPaec+9KAGIZohQrGfsBTKUUJrGRgeN+ZVpUw2WCA394gOvTDhS6ZtN0+X2yOtuL3OZYisIpsA1EM0bGaQJNOKU1WLO1RZQwt7FsDkoznSgC7TQvWG7elLlMJ7awGWKUrWmDlMFviS6/QLh6B9Sl2HAgE8pnDt4tw2wIrY8NzkrQlo+x8SIGV7dpIR4oUl6G0GMIug1jdM/QSDxU+IiVHrC4Tfkv6Bzsbeof8UXYxU3nIkgvrOBndTE7eMdzZJRVU8GYp484T6T1QqcD/VAsBpH+4//okHl3O2DCfFtY8AisefT3Uc0AoPYLMZuze55uSiVlbvVBmHOKNlS5OYIn0tscej8fz9LGtJe0pAwFnu0IgqEiGeaXIiotn8RTtrhK12B6nqmMu12kHpQisIttAjiD35J9+9ETD6Xv+GMi69bYFVqXOcDarS6d2LxbgQwosCTfwjm1qLByD9Sl0HAgE8plTNoFFJ5tJsjg/PTOX/jM7HXlZ+FACC4R89wcnA/xuqWjAffvnsdflSZ2ad4YD/sETnT+5g1mBNXx/UlScpGf6VDHB6pRZS0cX8Ux19I4nwS61eZIbeJ49TxTl6Qi6DJUFXIRJgbW19gxpP8ZRV3yFoiiKAsSL4bte/gNkSk3TQBL4vM87/nAyEKXAqrtXI0iezAPSBxPGQ76JMTrjwdQwYvynGR3PIbCm3I+e5WgnJQmsIttAfoHFagJlEVgUSQRZYW/zM9Nzi6m/3pW+JChE0QIrc3ct5/9igcnBn8dfs17KJ99xIBDI50n5BBYFIr7Bc3R6w+i0TatpG5jeWTKDguxAYIHQwjM6882ejI3WFEVR8TXvw4fYKklRFAi/nn5NAIqiALk2fffhQow+okd9yOrNl88rgSEagaDwKj/fgAsi7rNy1uEnheYJTjFXYvOO9srqdmcA8MQ2vfciR2Sqb3+duJbyK3Gfv+RY3cwWwusiJBfQNmWe5AgfJJM7SQQDmHfs3i3EbGj9sqPnvH3k98Da0tTFL2Vq4w9f18g7nUsk2PL2NzZe5ObXJv3Ozmpp85XZZCaCD+MiLLINFBJYOW+9PYFFJ+CgtwATs7ZDVW3XZkvJ4bQDgUWGFrwezwTarRZxM3lSYG36/kMsRAKKihOvXyzQj0S+994dW4gBCgQner/QWj2pweeT7jjkknvgbEdzm/HiWM40fhAI5O/JzgUWiM7218ra7fORLa+1OhX5QUwjzfubB3zMVaJ/OM/Z7sxnL/l2wk4E1qKzTS4QVuq6f+EeSg2WXca9ctNEhJ7eRO3oUiwVk+FajdNZhUR5M9QnMEQjEGaey8FHZMIk38t/dAwZnLLoxKzZpcR5IkhRFNhYX8+MeqYoQK7NOIz7RaozI/hmMmvrPo4a3q4FqyqdkSidtjGKITrxV+f+YzyoEArZYoW/3soosLZmkDqZQCBW6I6ZEacbwwkSUMyO1L2y5v9MrWzSDVVvHV+cvcR7azrFWlXPo1V+41DuRyvymyW0gb9KYEWnbbV7W+xzsa3nluqqZJdZn0Vaq5qvYYzpamPeed56Zy7PImonAmvZ2SESiBW607e4J0zHV12nZLTojEyY5PIW1A+YsyPpaoyvTfSpROkjSj/hjgO2vP85Zn9FUmDLe/Fo7oUHBAL5O5JfYIV9qDUZeHG6VVmRfRYHIDzW2r20kOKMXCC6sUECiqLA8p1OjQFx/KCvas32Cu2AnbgIk36BLMDqiFGWPOhta9qmSZ6lGHlmSZ6rCFZHjDJJvjMWwerUuePWwieKEJjDoBTm2tK1h30Icb5YXeam0dA7HPc/MFVVcTRHAkM0wpaBmbkp9Gy9dFdlGzK1kkqunUzPYUSxDDvNcXRmmolb4gklYZKvsnI6Bl2GqsqO80xQr+N8RyVLYBmGFwMY9nYth2OJDAUWArh/xt4lK25KBuv4axzHXzo6ZXki/DYW3OPeQJgxM4AI7rlz0aCVCHbXm4fmmcICEh+36qsUympufabuRU+3ZISIxmO+i+oCT0iu4wEcX3yJHiuuLMW3gTxB7slHpZuAq7cql8BKZ4U1m8+0KoW72VFW51BfBIS81noZLaQ4+hVsEhskRVEUWHR2NhiQ6xb9/mYk21AdD3kdFvN3p/TVIp7UsrlgCyx6uw0f6fUPRVEbs7YvkslCw15LHfNvsOwyVqc2n37CHQdsef9zHPUDKLAgkM+RXAKLTi29GcSe587gPBck/893tV3d5VyihRR+u11+mBX/SzM5YvtSVjcwn4gTvqFbwy93fFROihIFVnYeLB62/PbDwqpzSVfRlt9+ODlJxHBnl4wZtSPz9nZp7uRJYNV1+pgTL+t4WXghTpvlBOLKLFdOAkM0Ah0yO+eympGHr7JmREDiT++6UwnG6Isfsz8Z5svlmJFr875vlSWwKtNGu0wXYbajh/MAW15rtUAgEO4t1rO89dxSLeItbO6bLLuMB2oMiIv2/7L/h/hj6McvqzR5z82MPDVXiQQCWe3ZxyvlLUuxFLZgMalVuLdOhF0nxbTVJ3+idmzl/3xXm9UnnEubFEXvA1DrbQ8435oaudAs0w/MbwLCd+eWCwtl5VrHh8/1fGe++D/vSv5Dcthk58HiAfjtDcL9Zs96+k/RF7bZDYoef2TMMTWxeXsLY9D6tDsOueRGTrfqD3ea72DwCB0I5POCT2CRq4G5uYVch6PlIxENvvLyDNu5j1r7KwHR0LuC4fZxArvznzuvUnYjEPrjWer4HTIc2mAGQbA2efni8HyOMRFE199v+yjo7ZOIhpZ5jhahKEC8W8BevS16BAfEu4W5wPvyBIXEicBM4dOFSCJY0vnZgHg797qoWGvWb3LaRYqCJILvirkhIBbnFhZLe7RyAaKhd9nVCMj3gTnsda4Nj3mvtzLH16U9eY8J2haJaGi5YKUB4sXgf+7Np2LYwRr27HWyaW2th5ICGQQnL18eKjYm4dPsOBAI5O8Nn8CCQCAQCAQCgewAKLAgEAgEAoFAygwUWBAIBAKBQCBlBgosCAQCgUAgkDIDBRYEAoFAIBBImYECCwKBQCAQCKTMQIEFgUAgEAgEUmagwIJAIBAIBAIpM1BgQSAQCAQCgZQZKLAgEAgEAoFAygwUWBAIBAKBQCBlBgosCAQCgUAgkDIDBRYEAoFAIBBImYECCwKBQCAQCKTM/D+bt5DKxTYGZAAAAABJRU5ErkJggg==" alt="" />

Input

【DFS+堆的二叉树结构】15轻院校赛-J-堆

Output

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAlEAAAA3CAIAAACjLIjnAAAgAElEQVR4nO2d308T6f7H+wfMTS97YULSNOkFiTGkFxBi6EWbNSRg1jQGNATIGko8G+BsaHUjYNaCWWrWbeNu9awTd4k/qtsJ+3XWAypVgU3rkbqWQOMOhx+2wrC1QGmGprTTPvO9mJl2pj+gqOju4XndWdv58ZlnPu/n8+N5kDAQCAQCgewNJB/7AiAQCAQC+UBAzYNAIBDIXgFqHgQCgUD2ClDzIBAIBLJXgJoHgUAgkL0C1DwIBAKB7BWg5kEgEAhkrwA1DwKBQCB7Bah5EAgEAtkrQM2DQCAQyF7hI2lekqZBkk6Cj3P2jwyg6eSevfndBlCzz2fWoW3/VwD0RiRMRemPfR3/u9Ab1Dq1sYcM/HE0L0WgWokOJWLCD0EsvExuy3KIyn08CfL+9xcGp9aKdXUJctwx6FmMFfX95Jrn4Ti5yTAMA1Z99wcxAYPuQIL7Gv3GaW48hQcAw4B1YtB2zbNa4PBht6lKZrg7OdRT22yfS6S/FV8PRwHDMFEfduHaGBmnyenngQ3AMIBa8DydClDJ/Pcydu0C5osWeevvACCf3rHj7kBs+69ybIaIF56teEGENsU/ic4MO0aIVdEzjk7aL1wfCxRzi9E5e6tCcQKdLkL2wIpn8PawT/iYovP3bwwM+8J5f5x6iWrlWvRlKu/RIk6DrMzgDOWcJXvMiLhf4FzvRIIctvTd/v0NvcWh6ZB7oN/qfJ35SsQ3eO3Gb8//c+38N2PLb31RgHx6+9p9X5Q/QNSLnrrsConfWRByX76AupeKcLQxAtUhdXb/32sWU5wv4zxauDg/xJEg3Y5rwy/5lyHiRU1WV1B8hOSaG+1FXeRWA4An9RLVltbZ5/9eBn4X/jqal4o4T8sk2yLLdTogONShlNdYPVSRzy363KJRqnvHWY0EAfxUQxbNp/BX3MHA+jTaUt5kn0sAJvUS1R5osD30eDwejwvr0sgMzojw+rUokWIYEPZadVJ17+ibvC91jEB1MoNz/c3jHrXa6GTHK0gQaK2yZYCgmIjTINOhfxB4q0ppHFkFTIpAtcqzY5G8zpY7WiR9DfIqXfbtHKmSq/K44x2SIlCtpNripYr+RchpKFe1fedg/bvjuzZVqc70E5b5Z2320aLPLZrSWtSXyHyUXHWeURY6b65z8T/9Sa/RdN8jslxLzlwJBHG9tLJrbEXw0SKu319qcuVXVzBvryvVoi9TopPyk7D4C0tFeR4ji8aMkGdPbE1SdsC8V8DaeK96nwQ5bPFGCn9LMFxZ4i8sFco6u+8V1qZQnnGu5kywoh5bc/bAamg4iwfiouMSqFZ22smNVRD3WitrUSIhfDNBgkBrEUTRJJzwFUI4vP8+RCft5/vNYvrPNKgQRKHrFP9H/3n7ZJRhGAZEPVfyGJidRmcQGyT+wlJ5HCXEAzbhQ2tLJIpW+1wR08TUS1Rb8e7O4W/EbmhevofXfMUTzTy6vHFeDsUNd7A03FG+jU6KDhLzY21Kdb9rLZm5mMxbyjBMyGmoECkrPY/pD9aivoRofPDStT7veeadX0+InEhixt5UpuwYCuZ5qdP3ldwIRzKOGKxPoyeU6n7Xwn2D7NCXJn0pp5qpiPN0iR7Pdygmj+blutH3M6xB3GutQJrt/vj23+UIu03ajCWzLiP1EtXWi8dAgsQ7lBqrVzBUmIQPrVUeKFNpzU8juRaIOA2y/TpDn3kr+s+1qJFss9Bvhg2K0j638FyR0S5lJT8LyYUfGBnvX19dxkd+hYxc0PgFHtY7AlYnzLVS9dmbV08qa77z5s8N5Dk7COJ6WbPdH2cSM/amCk2utSNOg+xAG+bLTCNmsTYZ+xYDmlph4xX+bUpQgSmP5+mQWadsuTrq8Xg8fKKCnsf0lRoz/sCs03Q/yI5FwCv8VEtmxpnjBEAAP5UjtAI2A84f+s80qBCJRLKvqqXP7g3z/xX2DnRWyxGJXNvSbfdS73uusQ3UtO0oIm3FlhIFvpCKOE/LZB3Y7BJv36VZrIN/RjQVCoZjqYzboQKTHs/EkLlG2YqOPvN4PJMBds4f82NtSo35wQOzVnNuhMzKo+QYMHt8xgP42RyhFV6m33nJbO5qKJNIEM3FiQg/wCjvre4TajmClB3t7L3zwc27A3ZF8xKk61qfbZhY5J4cfkpZYfXGd0PzYn6sTVHkjIa9uOBQR2lNrysE6D99k0sxUITmMYBenlugkvz48Afcvw66iSlUJzM4w9y9RMVOBCTmfv5n6/eu4KuxKxfELrjPoNuPVLWc4/5pxXwRBlCBSc/EyL/05Wr9Nz3Hpfvk8v01JofLMxWg1r2W2nLTQ3/+fMgH07xUxHlaJhKJGIHqkLLq45locp/YbjECrdsyzqsTjYHoc4v2015XCFD+l683AMMwDB0cNpaq+12vfjOz/5V1UWxMvM1AyjILTYWWyaWnttpSjfmxnyRJkvUmIO61VkhECipOGucMDLCI6zXtw8uA2Vrz5GXV9bkz+OPVZTlK/I5skiPn1FKd1RsG9OuR7sN5RKWATYJ4m1TRaL7lwLA7V43HajsttzAMcwzYvhnkEpXpQJamQqzFMsbPDEL+bYqHfSOY47s2VUWL5RaGYRg24gsnuaxJ43UiBhj2Co2O6TWBDGSbMdsJpAhUu/3EKzo70CSVKBvts6LgPjFl+/QUvpQtA7tPMjJxUYNIJLLTzvW1meez+TJSIO61VshOOyNJmlohl8MxIHhGGbPwmhf23cdu29qqlC3fOjAMwwbv+1YBk6Smf2ws1w8QFDsYNJovHdMrQiNku7t8Bt8+mUxiTQerKpF94rlRImA3mNzr72KpD8CuaB7tx/QKlR6bpxmGYTbnBo7L9P+3MCEI/nRVcomiSnc8X/CeZlvNS665+tXST7/63lp4nn/hythS5vAg5Or9VNM7vgaSq84zSuSwxRvZUvM2l361XprgSz7c+PA5DRVa9PeX7OAL4vqS084InV9vAEUuBMRZtlduy2FZGzbL/fN1IBTjqz43vm2pRErkckRepvrUcPUOho34gpNorVxedYSzG1JWfbyh2eaJctHGcV2Vgv3sFD6/nj+32dDQ8LnN83ZjMR7Az7IuWlelkHAHb2q3PfZTG6IHlKfcFSPQuvIuxzMumefoKt+fyfI9c3SVCzUvOmc/WdExFARRAq1HSvvc0RS9hLezExQGxIjrjeUt2YW6t9C81EtUq6hq6eGDwE6dQmVwhhgQdBorlW0/ubjrS+eu+bzF8eoyBOEeBDto4y8sFZ90mr5s5CW/rLpelBhnPmScl6Smf2xUVnePvGZ9HKAm0UbtUfNjoeyBsO8+hmGY46bpqFTVZnNgGDbiW13AW8v4MenD2so1lt+4cGPh9Qr7c/5GgN9eh5QZnKEtNS/FsLHj/h7nUpCbooH1afSEQl5nGePHPjE6cK6xvLzZjD3zsyniYjRP9LYWIDZpqymRKI3DwbTDT5B4zz8LBzC7Rio2d0evUJ3oalPLTj98OdiqKFEbMSInBOdvLea3NyMysUvJ0bwIw065arqcCyHOvklq+sdGRWmt5Qk/P/5jbOBcQ3lVoxmb8HMppWI0b/vsGom19P/bZa5FkFpz2j0yNIl1mT3F1z4+DrtUz4sSaD2i6MDJBAMWcX354YGZpKAIsuS2aCSHLe5XeQstPFtbn37jshxVVnePzM7am2UNtieeCZe9S1OmM2HjAq8qKLGAyBzeo5ZWtvRbLeaeliqupJciUC2ibjmXTrP3tFQpeN+dXHP1azR8ZS6f5kUiToO8sObt5L7A2nivuqLpkvkfMnlZ2X519wOSBvHpy1pEkutQ8h1N5EYBOXbFfG2MLJRLKRJAUyskSZLki4HG/RXmJ4ts4C477YxEt9M8cWC0VW4zSc3+3KYsazBZLf2dOkVFx/BSippEGyvSZVfulS4/bnYuCIv+gHx6x+4o2CTChpQDtm/SEVuey6gwON8kCLRWWi8ojWQ9JrYKJdOiL1PgT5f1i1OD83G/va6Ur7NuFeftz0S3gou6aTr6/up5m6TruwZFWSM6SYEEOXbNfGWMBKzslatavnfOc9NxEPY9GB6bYKuJ5V2OJ8OD2L0nd89rkHQJIDfPIbZbultnG81Lrjq7Ko13XVfrtejL+NqUw/iJVH32l6EbgryHFfOtrE3fNbeeNI+SdB4zvq3mMcm1sXMqiVTV/YQr26+OnP7sxuz2FcT3y+abiX81Kg/qBybXuSunY/4R89H9iPpLjBBN4PhboyPO07IiNA+sjhgrux64Lmu1KBFfmXZ8qZYe6v7l11sC+17ApiNrU3fNbU3mJ2xP03vTPLOHjjw1a/YhmWLEntY8thmhRGkcWQ3iehnrShJrk08n15JMbm4z4jTIJJLsACUdwQipry6TSdjf0n/6fEGaCbtNarbvAFAea02pOp3PibpMpWqTm0/ogxXP7Z/sg8Njz5w/tVdJ+WpHikC10ibbk2d8c8FDW8MBwTtPEQOdJ28+nni+RBeleenAiK/w01RIFOe99tiO5BlV9Dymr1R3PyBXRgyyI9+P/NKtrmy9+5+HRnWVrrYi7VDEWeItNK9o71DkA00bM53kLEbzVJmifX+nTlEiDrCO8mMgQY7fGXD86nQ9RPXlyo6hYGQSbSxTHD93675b0Pcx7jC3H60qqzZef0py7xmgApO5vSHlXdgz0acegu8dzKt5Q25Mr1Ia7i3F0pef9fJHCbQekUhVLd/gvqU/0HpE2fH9xWOymtOXzN/fJxPvQfMAFZicJLKSAgUIEJN8/YZh6D89A19UIQca0UkKcFcuSR+ZXhw1H1MgKt2ZK/jTV/xvBEMlMWNvUsnl+/LHeekp6Y41L+w2HdbjswRar0V9G/67Pa2mgbE5autmwqwoPLsQYO436BRFjmq20s/28oBVd98Xtum0OwY0+cTS2tb703VbV5vxOmu3jblfrd39P9ixnwe+7+08Wvdu7hvQa1N3e+sVimPm0UU6KwKOLTjNxxTyI733MxO4HWoeiLr7DujxZQLValFiY3aw55/nBsbmC0UQjOAswil+1ltp7jPo9hereVzOtqTGNhljmBzNAzT522Vjp+nqTfvV3nbjVVdOcfGjsHt9m2ziUXPixCdStnEr+tyiUWosz6O5mpe/tTcrByhkJfPmgEVcX8H32oLEnL2JS2cXSnyB2PSVGmWmBLh9PS9J08F7X1pfxHcU5/FnB6+d1n42fCxR6Dr7Td/8YG6WZWXMYwtDXYc13Q/IRCQwcdvUesFJxqjXr/zPrBpp/dXHN/QHrd54MuI8vS871R4jUJ3s8x8fYzfuL0RFfZt8IpSfQhjsM8UvM8gCxL3WCq53NJ3xj22neeK1Clm5zTxrFUCCQGtLjcN/zuGtZYj63MgSmd3of386tDp1t+/s5YlQgZd7u5xhHs0rPaSrVih0nZ3HansevwECw6bvLvrMXC6VSJASeYlU3fvk5b+NSkQiKdU7/n21tlRjeR4tpHmACkx6c5ZkMAwD6NCMJyNc7JUU0bksamBOhImhbxsrEN6xpq9cIrJAIkw40TONTZmG2LSVYn6sTaHUm748xEsLP1BZH3hljARiuxWpefEXlooyneErg+6AQtfZb+7ru/TVZ7KDbTY7L/ZsX0ZkEj1Za3ocyZhLOFVxYV0aaYPtiWj+MhMqpgufAbT/dqNUgtReffH7v5r7XOnKEwgOdSg/6XWvAoZtklJ3DC+l/Pa6Ojuf+tzw2f7xlpoHYiHC5TC3quX7VC2XxwIbnP2y/AybdkIONF5+Ko7AitQ8ymupUeg6vzboFAqdob+/t++bc5+Vqdq+c9w06aQ6lIixjUWbk2hT7flH/HmzDZznrRRMEAvBaR7XM4UgR23TVJbmgTePezTH+XkGiE1fqdUUamX/oOzmWgUQdBorJJKyVi6HniDxDgXSbPfH30MPS6Z3Ll1HYTmm09XlqRryrUog8tSsqWrH/WnbF9PDEnXbzo+t7Cy3ma246cOCqLuvNDtcS1ILc8s0YKIuUynfOghWJmwn6/rG1+I+9HCr3R8h0LoKy4tM+R7E1uafXm8/iFT3DRGr9C7GeZTXUsMunGDAIq4/UGF5EWcKax4dIjw55H27hO9YYsbeVNMxvAQYBlD+meXiZ4UJ0j1o59a6FaN55Zn+w6XfLJoDx89d+nGc3JyzN2Xq0MK7S646zyiln+g+PaD99uaPra19I74ptB5Bmu3+6KrzjFLRgS9OijUv9MjUIE5RFOT44YxL2hkg7LXWlwscK8NfuWSbrClvpT8fGFUVesw3nbnZYnKb1RYvtY3mcemNV26Ljo0al1/hnTJBtxfNHjCQPapFvONaBTY6l0hEqy8or6VaUmnzJTOnQBqxwLStUnq42zFOhDYZJkV57z8KvFVcEn1u0ShUDed+eiTsVQFRz5Vmcfs6wyQpn6PP+ojM1bwKbo5bWPNoKrTM1Yk0FvcSSS4TeGeFFn2Z4p5LmEg32WV7GwFv1+CW1jzOo+5Daq5MxxICzaO8lmrRIEy9RLUlhR/0h2NX1+exA+5Ak32Gm11Gn1s0pYcHZuh317x0aDg10ChlS4O+oe5DUvVXQ1y/KOl39pZnen9XKJptFTskVXc7XKPDgz8P2PovDPuT2+Q2GYahvNazdn98Zz0sBTWP7Qs/PjAnfKPWPbbPs3W6+YonStM0YBjKa6nX/9/jW3XV6VQtWB3t1exXNX7V//nBXc9tRp+ZyzXsqcES1iQ7YpveyH5AQs1LBNyi8OzGty2VCFIiL5EfrFJJVfpvb4kqcIPuQIJbqtHtGB3BsVuo+bvhwAY5dm2bpiTOFou4fr+yazRjBGFuc2LswdNApqqZ3UgpXLzItgG3Yf6YuFkggLeqlMafbnbyYgACeGuZRKJswvwg4UNr9x/+0fGv/HHeOvFoeJwrpxWQk3eB3oxlBz070bwUiP35Z1gUsm+jecBvr5O14UF62x4W/mLquaNxC0t6uaUjGc3jv5Dnlc//yXZ3J4DEGiQSOe+g+RuRSaoMKDf6fkYNWonc7KHXp9ETCjaKltcar09suah/C+LhENcwAsixKwXb66yYT+TbhD0sMj0e3LJvU1Tg5KzBlxLOtVQhYs0TNXCJR2n+TwrvvcBbtSVj0nSG0zOX1jzWyA0YmflNAGuQ7+DB7Rq7p3kgMWdvUmpPnPgEyXRPxcPLq9zygPe0Pk+UJX/zuEddyieXc+f78QB+tqHFYDLbBhy/Ot0eLxEIUfSWPSzsOWYGWmzeOODatR+67XVVBudiAD/bbPNQ+dcqZDSPXl/fAIzIlYB5e115E5bTDwzI4faqWtSXyI4FQYJAD5eVHdgvXCqwEfDNhenset6+Txo+b8oJJbInmDsiFRk7q0RUujPofd/CFFrPJau30DzxXdFLeLuyrOmG4zttRadj0Kw9nO4tFNjYfrKhrYt7NOyTiRGoTpTcXvrNosl3iqjLVKrg89upiPO0jOtIFGhq5kx5e1j4f9LzWPtnPcMLCWHhxGvVSOtR4hX/BJOrzjNKZWv/V59KNVZvNBmjonSh+bJon4td0Lw8FK15mq/xh2hXu829tiFYdlJfXbaPa09taGi2ebgaAJfSJIN4m1RxtNvhXYtM2JrZ9Mk2mqc2YaNDN2wXDbr8cd6H1bzklK1SKnbHaQAd+mN8aKC/sQLJJKjenhSBakVL7oQjOWu0pLiU5noA1+9X6L5yeN9EPFea2Q7hrTVPbbo7eu+6zWzQHcgf5+2u5jEMeDPWrZYgNW2fn+A0L4+RA1iDXBBefzR2S/O4dpLe8TW2jCde4vr+NC9L2DaXcEO55uux1STDxP32Zul2C00ATSe2y22CIP6PU84Iw6bsXhBTd/SyT03Y72xGAoR997ERXziRX/OmJu0njfa5qDC3Sccic/ZmaS1KJJKbsUzSASxhTVJtr3sVgKDTqNbaJjN5gNTMwGFFvsyA0Epxv715X31DvbiK+T4CPkBT/gnM3KiSSSQV/KrtYjQP0OSDbnVFIzpJJbkOSdqP6cubra6tt54CNL2RPQAKnCLutVZIJNImbKnY3GZhzWPS+8DydweCo93aUuPIKuCeYHJtvFddqcfmE6sjRqWK84wFNA8Ecb20io/OxU09ZrPZbBEsmn5fbKsKNBV4gZs+VVQbUScRprOmLwWEmR38S7+jtfurOw0NipJMs1gezaMp751eg77h6JHqg6Uqw62JmTexdadBdtjiXuCWWn8szWNWxroqxc53k5wklp9drBv4L7/70qq7V1ticr9j00XBVy/PaAF0aMbjIZam0FppTeeZ4wrkUGZqmKt5lNfea2hpqNNVV8pVRvvEf0OxoNNQobH8tsTtFfABNY9hwNqTbpVUIqnic5tht6lKZOTklK1SVnCTow/I7mge7cfbKxSNP05TSa4Wggi7wN/nmnQC1RVR8BefC8TWFqbGh25YjPrGnuHFP7bWPDqIG45l9qOLEugx5fH2z9VKtWjBb46rjTgNMtWRo5+dHV3m5/jl5YbLN8xf6E/dnl58YFRWdAy/eGgoS98jiC16bvfUlOm++taoUXbgmWUGycjERY3iQJnqZM7qe2EKLug0ausuWb7YoealCFSbvVtNXmP7BhrLSuQlUjW7v4M4DssNwuhVYsh8VHlQPzBJieaqSWoO79JoWmyjgViWfsXWFryPsB9Mba09wzN/FKN5IOg0qjVnvv5SzZZp31HzMncrrOfRNOAGxg/3fmlVKfSYnwYME/EOfMvtG5n/OCDq7iuVlLNFSvYImZZIkiywf+w7spUqgMDdjiqlPKN2uTe7RTC6uYR3KpXG4eAmNYd3Zb8CDCMYbGDZc8/pDVCUOLcp6GH5aJrHLiDme1gYQC/d6zk/+mbCrMhsk7Y5P6DX44v51/MX+b7sTPMYhuE8p7JjKJhiF1YdysmIpKdiy557j72BSFyU2ywX9LDsouaBgL0he0LALg5Jax6b3UkbORlxf12u7OQ3BNgk3TdMbZ+1GH8Y++DNnO9f8wD1EjN+wrtFhmEYht/xJM373HusICGnoVwcGEUJ++mG49VlCm2LCcXHpwIUzWzbwwKCTmMzv9kjiBHXG5V1tukITT7oVgvj13ybOUkPNKLeNYokPE7s6lcN6iOGy796uCZ7OjhsVCr1pi8PSUX7ilE+tFEuQXivyqTXGveMLiyOnNOoO295hRsrCNbrkHdblcfQp78YZPzaR1aM3BbN9pqHbD0FA7GF4e5DUs3FidV5vL0cUfeOvqEK7sNCB72/XjZUKxHVP9CJP/MtEgD0m4mBdo1U1Wx2uObC8aj3Wmv60biJkGCbpS01LxmZuKhRduBkjJr+sVF5yOjwLgyfet+ax8IPDDpKxYrzYiCAt1ZWHa+rUh4zOxdi4C+Q2wTLnse+tXwlwG00j1veeqiHm8OxEbxSnel0ZZjt63nCKgDbtxnN0jzhyoTctQrsJ0VpXsrvvGTuN+gUEglS1XJOFFInqbn73zbpGs+cN5uMbd0/+6gk7blY03ne3G2+ar8zYD3XbRsttEdzMe+LwBpF5jYZQM3gXYcE+/Syu+qkDZ625xb1PGEPC9e3mczWPOFSkNy1Cuwn+wqO0pTfae1qUSskiErXeckpbPMBIVdvi3itwhOLvkHfdb6/q7VOf2k0rQjxF9YvfvbTgIm/sH5+5wNvIP7eNQ/QlH9icHC8gHoDKrTIdpdssYEQiJALiyQ5hbWX71zzuHYmcu6RueaAeL9wEPU9uDP6MsQ5rFTEfakpt6c/U89oPoW/SgVx/b42PEgzTGLNe7O9qoJvyWF3Bjlpn4uCWHiZ9E/Y6mRC9aL/9DyYIOn4EtYqUwl2mshcTsjVW41IJEid3Q9SMfKlZ+z/LhtqFapW28O739aUqrsfLEUWPbd7auRl/NIr9jWobPneOc/t4xAj0KOlJleU9uPtVere8bV1djZ9O7MQzNam2jq3CVYnLnRaC25JnIoFnlgbDiD8PAas/WZuNd2ZXvyjUG6Tnr3d/tkZ9PG8cLOJXFUAkflH6Jmjeqs3DKIzj+55xCbK2tusIWd7M75SyD2RJEUMdteUlshLENU/B0b/4/H45gV+htutYqseFv5+w0GSnHWatEVkVhluyP1hb5FmTeM2l/DOUnXv6Jvomvdme1WJvLqxoUrObkzjJdJ7yb33UG+HkRD/k5y1sA18w3OY9OC2Ng2CZIUdgCY9j33ChdUg7rVWZG9QJ9K8q96lWayDXXIDYuFlcmHMXJveAoIKTOVp6xXhwro0H7kVYpv3JUNOr4BQVwSjLrbowb9vq9qHqLN2yNwkn/7mE+3YQnktNUK5zda8q7+vzmJt+5rt/jhr38Uxc0XaXDmrWfPwzNFVXrK7M7P4C2vn4BJg/jc0bzuiLlMpIpEoa/qevCl4q5TXUi2RSBDV5wPF/FGYfL+VSGQq/fXpgnvsMuwOI1u4GxBbX6ESiflh8+kbk3EA1rzX2ltMv84I+o9TbDUOBHG9VCKRH+nL90dYwMbqSm5YwEK/Humu3m9yRRkQ9V5rbTltsY8S4QTDAJp0DT7yPDHXSlWtNlHpK0nN3bd+84AEXB1LglT3uoLRubs9p65PU8lMK3n6KrfLbYJVZ88XOJnf0NE5R4cKkan0P3nXsrZ0obyW6iJ6WNLXsdOu6BzfnXWK2BR6VJWdXqPX5tw4aja26Krkovx2KZeq2j7Oo4N4mzR3+GVvf5wm5DSUSST7qjp+mU9v8xGbHeqtVwqPQK/Nuf993dZnaGk8Xl2GCC9Nyk6q3hdvqXmF55cgQdzoMKKP5vPs8p35EvsWSPYJts5hxJo3bq7v+WX4klZ+pNf5muZ+gsirz2BE8SvhEsuee45Bz9v/uaN3Zsv3RUTRuc0oMXDGmDVHzIYblhKkWrjxrEDzVsbMrad+wX/QHqjpHSFpwIBFXF8qkdcasT92sDIXLHsGd9vAm6T7p66Wxsb2izjxof/a5QfXPHNAf4IAAAGUSURBVBALL2/7J6OS1OvZeW7n3x2fgNsraxfqJIXPGQsvr2yzwcRbHTdBzv43XHDzMEAFJj2TM6Ed/f2tfMeJra9sYa3YgntcWPv5CwGo4PJWbiL9vZ09IBALL5PFfz8VCwezhzRY8Qzen86eJeQ/007/hNpfFDpEeDzemTfie0luhBYD5HpmeAkzwyAW3mrk/UXZ5n3ZtdPSoRlPzvsONkKvA8uC15PeoDbTW7vEwqu74Jf+3nykv5MOgUAgEMgHB2oeBAKBQPYKUPMgEAgEsleAmgeBQCCQvQLUPAgEAoHsFaDmQSAQCGSvADUPAoFAIHsFqHkQCAQC2StAzYNAIBDIXgFqHgQCgUD2ClDzIBAIBLJXgJoHgUAgkL0C1DwIBAKB7BWg5kEgEAhkrwA1DwKBQCB7Bah5EAgEAtkrQM2DQCAQyF4Bah4EAoFA9gpQ8yAQCASyV4CaB4FAIJC9AtQ8CAQCgewVoOZBIBAIZK8ANQ8CgUAgewWoeRAIBALZK0DNg0AgEMheAWoeBAKBQPYK/w+WP36XXPcBeQAAAABJRU5ErkJggg==" alt="" />

Sample Input

3
1
10
3
10 5 3
1 2
1 3
5
1 2 3 4 5
3 1
2 1
2 4
2 5

Sample Output

Yes
No
Yes

【思路】

  堆:堆最重要的性质就是儿子的值一定不小于父亲的值。除此之外,树的节点是按从上到下、从左到右的顺序紧凑排列的。

    本题的堆是一种叫做二叉堆的数据结构。

    《挑战程序设计》 P71

  对于这题,首先要模拟出二叉树的结构,根据题意通过value[]保存每个节点的权值(值)

       再将每两节点之间是否有边连接,保存为tree[][],通过输入的两节点a,b,即保存tree[a][b] = 1

       1. 在接下来的深搜中,只需搜索tree[][] == 1的节点

       2. 同时,在搜索中还需要满足最小堆(堆)的性质,即value[节点] <= value[子节点]

       若符合以上1.2两个条件,则继续向深处(子节点)搜索

          即dfs(深度优先搜索)的性质:列举出所有可能,每种可能搜索至,直到边界,或不符合条件为止。(不撞南墙不回头)

       依旧,还需要一个数组来保存,当前的节点是否被搜索过,即see[] = 1

 #include<iostream>
#include<cstring>
using namespace std;
#define Max(a,b) (a > b ? a : b)
#define Min(a,b) (a < b ? a : b)
const int MAXN = ;
int value[MAXN],tree[MAXN][MAXN],see[MAXN],ac,m;
void dfs(int k){
see[k] = ; //表示已搜过
for(int j = ;j <= m;j++){
if(tree[k][j] && !see[j]){ //没搜索过,并且两节点间存在边
if(value[k] <= value[j]) //当前节点权值小于或等于它的子节点权值
dfs(j);
else
ac = ;
}
}
}
int main(){
int n;
scanf("%d",&n);
while(n--){
memset(tree,,sizeof(tree));
memset(see,,sizeof(see));
int i;
cin >> m;
for(i = ;i <= m;i++){
cin >> value[i];
}
for(i = ;i < m;i++){
int a,b;
cin >> a >> b;
//tree[a][b] = 1; 如果这样,那么:
// 1 2 与 1 2
// 1 4 1 4
// 4 3 3 4
// 4 5 4 5
// 结果为前者是Yes 后者为 No
//应为:
tree[a][b] = ;
tree[b][a] = ;
}
ac = ;
dfs();//从根节点开始
cout << (ac ? "No" : "Yes") << endl;
//printf(ac ? "No\n" : "Yes\n") ;
}
return ;
}