OpenCV中resize函数插值算法的实现过程(五种)

时间:2022-11-14 14:41:18

最新版OpenCV2.4.7中,cv::resize函数有五种插值算法:最近邻、双线性、双三次、基于像素区域关系、兰索斯插值。下面用for循环代替cv::resize函数来说明其详细的插值实现过程,其中部分代码摘自于cv::resize函数中的源代码。

每种插值算法的前部分代码是相同的,如下:

?
1
2
3
4
5
6
7
8
cv::Mat matSrc, matDst1, matDst2;
 
matSrc = cv::imread("lena.jpg", 2 | 4);
matDst1 = cv::Mat(cv::Size(800, 1000), matSrc.type(), cv::Scalar::all(0));
matDst2 = cv::Mat(matDst1.size(), matSrc.type(), cv::Scalar::all(0));
 
double scale_x = (double)matSrc.cols / matDst1.cols;
double scale_y = (double)matSrc.rows / matDst1.rows;

1、最近邻:公式,

OpenCV中resize函数插值算法的实现过程(五种)OpenCV中resize函数插值算法的实现过程(五种)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
for (int i = 0; i < matDst1.cols; ++i)
{
    int sx = cvFloor(i * scale_x);
    sx = std::min(sx, matSrc.cols - 1);
    for (int j = 0; j < matDst1.rows; ++j)
    {
        int sy = cvFloor(j * scale_y);
        sy = std::min(sy, matSrc.rows - 1);
        matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
    }
}
cv::imwrite("nearest_1.jpg", matDst1);
 
cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 0);
cv::imwrite("nearest_2.jpg", matDst2);

2、双线性:由相邻的四像素(2*2)计算得出,公式,

OpenCV中resize函数插值算法的实现过程(五种)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
uchar* dataDst = matDst1.data;
int stepDst = matDst1.step;
uchar* dataSrc = matSrc.data;
int stepSrc = matSrc.step;
int iWidthSrc = matSrc.cols;
int iHiehgtSrc = matSrc.rows;
 
for (int j = 0; j < matDst1.rows; ++j)
{
    float fy = (float)((j + 0.5) * scale_y - 0.5);
    int sy = cvFloor(fy);
    fy -= sy;
    sy = std::min(sy, iHiehgtSrc - 2);
    sy = std::max(0, sy);
 
    short cbufy[2];
    cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
    cbufy[1] = 2048 - cbufy[0];
 
    for (int i = 0; i < matDst1.cols; ++i)
    {
        float fx = (float)((i + 0.5) * scale_x - 0.5);
        int sx = cvFloor(fx);
        fx -= sx;
 
        if (sx < 0) {
            fx = 0, sx = 0;
        }
        if (sx >= iWidthSrc - 1) {
            fx = 0, sx = iWidthSrc - 2;
        }
 
        short cbufx[2];
        cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
        cbufx[1] = 2048 - cbufx[0];
 
        for (int k = 0; k < matSrc.channels(); ++k)
        {
            *(dataDst+ j*stepDst + 3*i + k) = (*(dataSrc + sy*stepSrc + 3*sx + k) * cbufx[0] * cbufy[0] +
                *(dataSrc + (sy+1)*stepSrc + 3*sx + k) * cbufx[0] * cbufy[1] +
                *(dataSrc + sy*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[0] +
                *(dataSrc + (sy+1)*stepSrc + 3*(sx+1) + k) * cbufx[1] * cbufy[1]) >> 22;
        }
    }
}
cv::imwrite("linear_1.jpg", matDst1);
 
cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 1);
cv::imwrite("linear_2.jpg", matDst2);

3、双三次:由相邻的4*4像素计算得出,公式类似于双线性

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
int iscale_x = cv::saturate_cast<int>(scale_x);
int iscale_y = cv::saturate_cast<int>(scale_y);
 
for (int j = 0; j < matDst1.rows; ++j)
{
    float fy = (float)((j + 0.5) * scale_y - 0.5);
    int sy = cvFloor(fy);
    fy -= sy;
    sy = std::min(sy, matSrc.rows - 3);
    sy = std::max(1, sy);
 
    const float A = -0.75f;
 
    float coeffsY[4];
    coeffsY[0] = ((A*(fy + 1) - 5*A)*(fy + 1) + 8*A)*(fy + 1) - 4*A;
    coeffsY[1] = ((A + 2)*fy - (A + 3))*fy*fy + 1;
    coeffsY[2] = ((A + 2)*(1 - fy) - (A + 3))*(1 - fy)*(1 - fy) + 1;
    coeffsY[3] = 1.f - coeffsY[0] - coeffsY[1] - coeffsY[2];
 
    short cbufY[4];
    cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
    cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
    cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
    cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
 
    for (int i = 0; i < matDst1.cols; ++i)
    {
        float fx = (float)((i + 0.5) * scale_x - 0.5);
        int sx = cvFloor(fx);
        fx -= sx;
 
        if (sx < 1) {
            fx = 0, sx = 1;
        }
        if (sx >= matSrc.cols - 3) {
            fx = 0, sx = matSrc.cols - 3;
        }
 
        float coeffsX[4];
        coeffsX[0] = ((A*(fx + 1) - 5*A)*(fx + 1) + 8*A)*(fx + 1) - 4*A;
        coeffsX[1] = ((A + 2)*fx - (A + 3))*fx*fx + 1;
        coeffsX[2] = ((A + 2)*(1 - fx) - (A + 3))*(1 - fx)*(1 - fx) + 1;
        coeffsX[3] = 1.f - coeffsX[0] - coeffsX[1] - coeffsX[2];
 
        short cbufX[4];
        cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
        cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
        cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
        cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
 
        for (int k = 0; k < matSrc.channels(); ++k)
        {
            matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[0] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[0] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[1] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[1] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[2] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[2] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[3] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[3] * cbufY[3] ) >> 22);
        }
    }
}
cv::imwrite("cubic_1.jpg", matDst1);
 
cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 2);
cv::imwrite("cubic_2.jpg", matDst2);

4、基于像素区域关系:共分三种情况,图像放大时类似于双线性插值,图像缩小(x轴、y轴同时缩小)又分两种情况,此情况下可以避免波纹出现。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#ifdef _MSC_VER
    cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);
    cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_2.jpg", matDst2);
#else
    cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 3);
    cv::imwrite("area_2.jpg", matDst2);
#endif
 
    fprintf(stdout, "==== start area ====\n");
    double inv_scale_x = 1. / scale_x;
    double inv_scale_y = 1. / scale_y;
    int iscale_x = cv::saturate_cast<int>(scale_x);
    int iscale_y = cv::saturate_cast<int>(scale_y);
    bool is_area_fast = std::abs(scale_x - iscale_x) < DBL_EPSILON && std::abs(scale_y - iscale_y) < DBL_EPSILON;
 
    if (scale_x >= 1 && scale_y >= 1)  { // zoom out
        if (is_area_fast)  { // integer multiples
            for (int j = 0; j < matDst1.rows; ++j) {
                int sy = std::min(cvFloor(j * scale_y), matSrc.rows - 1);
 
                for (int i = 0; i < matDst1.cols; ++i) {
                    int sx = std::min(cvFloor(i * scale_x), matSrc.cols -1);
 
                    matDst1.at<cv::Vec3b>(j, i) = matSrc.at<cv::Vec3b>(sy, sx);
                }
            }
#ifdef _MSC_VER
            cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
            cv::imwrite("area_1.jpg", matDst1);
#endif
            return 0;
        }
 
        for (int j = 0; j < matDst1.rows; ++j) {
            double fsy1 = j * scale_y;
            double fsy2 = fsy1 + scale_y;
            double cellHeight = cv::min(scale_y, matSrc.rows - fsy1);
 
            int sy1 = cvCeil(fsy1), sy2 = cvFloor(fsy2);
 
            sy2 = std::min(sy2, matSrc.rows - 2);
            sy1 = std::min(sy1, sy2);
 
            float cbufy[2];
            cbufy[0] = (float)((sy1 - fsy1) / cellHeight);
            cbufy[1] = (float)(std::min(std::min(fsy2 - sy2, 1.), cellHeight) / cellHeight);
 
            for (int i = 0; i < matDst1.cols; ++i) {
                double fsx1 = i * scale_x;
                double fsx2 = fsx1 + scale_x;
                double cellWidth = std::min(scale_x, matSrc.cols - fsx1);
 
                int sx1 = cvCeil(fsx1), sx2 = cvFloor(fsx2);
 
                sx2 = std::min(sx2, matSrc.cols - 2);
                sx1 = std::min(sx1, sx2);
 
                float cbufx[2];
                cbufx[0] = (float)((sx1 - fsx1) / cellWidth);
                cbufx[1] = (float)(std::min(std::min(fsx2 - sx2, 1.), cellWidth) / cellWidth);
 
                for (int k = 0; k < matSrc.channels(); ++k) {
                    matDst1.at<cv::Vec3b>(j, i)[k] = (uchar)(matSrc.at<cv::Vec3b>(sy1, sx1)[k] * cbufx[0] * cbufy[0] +
                        matSrc.at<cv::Vec3b>(sy1 + 1, sx1)[k] * cbufx[0] * cbufy[1] +
                        matSrc.at<cv::Vec3b>(sy1, sx1 + 1)[k] * cbufx[1] * cbufy[0] +
                        matSrc.at<cv::Vec3b>(sy1 + 1, sx1 + 1)[k] * cbufx[1] * cbufy[1]);
                }
            }
        }
#ifdef _MSC_VER
        cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
        cv::imwrite("area_1.jpg", matDst1);
#endif
 
        return 0;
    }
 
    //zoom in,it is emulated using some variant of bilinear interpolation
    for (int j = 0; j < matDst1.rows; ++j) {
        int  sy = cvFloor(j * scale_y);
        float fy = (float)((j + 1) - (sy + 1) * inv_scale_y);
        fy = fy <= 0 ? 0.f : fy - cvFloor(fy);
        sy = std::min(sy, matSrc.rows - 2);
 
        short cbufy[2];
        cbufy[0] = cv::saturate_cast<short>((1.f - fy) * 2048);
        cbufy[1] = 2048 - cbufy[0];
 
        for (int i = 0; i < matDst1.cols; ++i) {
            int sx = cvFloor(i * scale_x);
            float fx = (float)((i + 1) - (sx + 1) * inv_scale_x);
            fx = fx < 0 ? 0.f : fx - cvFloor(fx);
 
            if (sx < 0) {
                fx = 0, sx = 0;
            }
 
            if (sx >= matSrc.cols - 1) {
                fx = 0, sx = matSrc.cols - 2;
            }
 
            short cbufx[2];
            cbufx[0] = cv::saturate_cast<short>((1.f - fx) * 2048);
            cbufx[1] = 2048 - cbufx[0];
 
            for (int k = 0; k < matSrc.channels(); ++k) {
                matDst1.at<cv::Vec3b>(j, i)[k] = (matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufx[0] * cbufy[0] +
                    matSrc.at<cv::Vec3b>(sy + 1, sx)[k] * cbufx[0] * cbufy[1] +
                    matSrc.at<cv::Vec3b>(sy, sx + 1)[k] * cbufx[1] * cbufy[0] +
                    matSrc.at<cv::Vec3b>(sy + 1, sx + 1)[k] * cbufx[1] * cbufy[1]) >> 22;
            }
        }
    }
    fprintf(stdout, "==== end area ====\n");
 
#ifdef _MSC_VER
    cv::imwrite("E:/GitCode/OpenCV_Test/test_images/area_1.jpg", matDst1);
#else
    cv::imwrite("area_1.jpg", matDst1);
#endif

注:以上基于area进行图像缩小的代码有问题,具体实现代码可以参考https://github.com/fengbingchun/OpenCV_Test/blob/master/src/fbc_cv/include/resize.hpp,用法如下:

?
1
2
3
fbc::Mat3BGR src(matSrc.rows, matSrc.cols, matSrc.data);
fbc::Mat3BGR dst(matDst1.rows, matDst1.cols, matDst1.data);
fbc::resize(src, dst, 3);

5、兰索斯插值:由相邻的8*8像素计算得出,公式类似于双线性

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
int iscale_x = cv::saturate_cast<int>(scale_x);
int iscale_y = cv::saturate_cast<int>(scale_y);
 
for (int j = 0; j < matDst1.rows; ++j)
{
    float fy = (float)((j + 0.5) * scale_y - 0.5);
    int sy = cvFloor(fy);
    fy -= sy;
    sy = std::min(sy, matSrc.rows - 5);
    sy = std::max(3, sy);
 
    const double s45 = 0.70710678118654752440084436210485;
    const double cs[][2] = {{1, 0}, {-s45, -s45}, {0, 1}, {s45, -s45}, {-1, 0}, {s45, s45}, {0, -1}, {-s45, s45}};
    float coeffsY[8];
 
    if (fy < FLT_EPSILON) {
        for (int t = 0; t < 8; t++)
            coeffsY[t] = 0;
        coeffsY[3] = 1;
    } else {
        float sum = 0;
        double y0 = -(fy + 3) * CV_PI * 0.25, s0 = sin(y0), c0 = cos(y0);
 
        for (int t = 0; t < 8; ++t)
        {
            double dy = -(fy + 3 -t) * CV_PI * 0.25;
            coeffsY[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dy * dy));
            sum += coeffsY[t];
        }
 
        sum = 1.f / sum;
        for (int t = 0; t < 8; ++t)
            coeffsY[t] *= sum;
    }
 
    short cbufY[8];
    cbufY[0] = cv::saturate_cast<short>(coeffsY[0] * 2048);
    cbufY[1] = cv::saturate_cast<short>(coeffsY[1] * 2048);
    cbufY[2] = cv::saturate_cast<short>(coeffsY[2] * 2048);
    cbufY[3] = cv::saturate_cast<short>(coeffsY[3] * 2048);
    cbufY[4] = cv::saturate_cast<short>(coeffsY[4] * 2048);
    cbufY[5] = cv::saturate_cast<short>(coeffsY[5] * 2048);
    cbufY[6] = cv::saturate_cast<short>(coeffsY[6] * 2048);
    cbufY[7] = cv::saturate_cast<short>(coeffsY[7] * 2048);
 
    for (int i = 0; i < matDst1.cols; ++i)
    {
        float fx = (float)((i + 0.5) * scale_x - 0.5);
        int sx = cvFloor(fx);
        fx -= sx;
 
        if (sx < 3) {
            fx = 0, sx = 3;
        }
        if (sx >= matSrc.cols - 5) {
            fx = 0, sx = matSrc.cols - 5;
        }
 
        float coeffsX[8];
 
        if (fx < FLT_EPSILON) {
            for ( int t = 0; t < 8; t++ )
                coeffsX[t] = 0;
            coeffsX[3] = 1;
        } else {
            float sum = 0;
            double x0 = -(fx + 3) * CV_PI * 0.25, s0 = sin(x0), c0 = cos(x0);
 
            for (int t = 0; t < 8; ++t)
            {
                double dx = -(fx + 3 -t) * CV_PI * 0.25;
                coeffsX[t] = (float)((cs[t][0] * s0 + cs[t][1] * c0) / (dx * dx));
                sum += coeffsX[t];
            }
 
            sum = 1.f / sum;
            for (int t = 0; t < 8; ++t)
                coeffsX[t] *= sum;
        }
 
        short cbufX[8];
        cbufX[0] = cv::saturate_cast<short>(coeffsX[0] * 2048);
        cbufX[1] = cv::saturate_cast<short>(coeffsX[1] * 2048);
        cbufX[2] = cv::saturate_cast<short>(coeffsX[2] * 2048);
        cbufX[3] = cv::saturate_cast<short>(coeffsX[3] * 2048);
        cbufX[4] = cv::saturate_cast<short>(coeffsX[4] * 2048);
        cbufX[5] = cv::saturate_cast<short>(coeffsX[5] * 2048);
        cbufX[6] = cv::saturate_cast<short>(coeffsX[6] * 2048);
        cbufX[7] = cv::saturate_cast<short>(coeffsX[7] * 2048);
 
        for (int k = 0; k < matSrc.channels(); ++k)
        {
            matDst1.at<cv::Vec3b>(j, i)[k] = abs((matSrc.at<cv::Vec3b>(sy-3, sx-3)[k] * cbufX[0] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-3)[k] * cbufX[0] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx-3)[k] * cbufX[0] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-3)[k] * cbufX[0] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx-3)[k] * cbufX[0] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-3)[k] * cbufX[0] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx-3)[k] * cbufX[0] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-3)[k] * cbufX[0] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx-2)[k] * cbufX[1] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-2)[k] * cbufX[1] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx-2)[k] * cbufX[1] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-2)[k] * cbufX[1] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx-2)[k] * cbufX[1] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-2)[k] * cbufX[1] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx-2)[k] * cbufX[1] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-2)[k] * cbufX[1] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx-1)[k] * cbufX[2] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx-1)[k] * cbufX[2] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx-1)[k] * cbufX[2] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx-1)[k] * cbufX[2] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx-1)[k] * cbufX[2] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx-1)[k] * cbufX[2] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx-1)[k] * cbufX[2] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx-1)[k] * cbufX[2] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx)[k] * cbufX[3] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx)[k] * cbufX[3] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx)[k] * cbufX[3] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx)[k] * cbufX[3] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx)[k] * cbufX[3] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx)[k] * cbufX[3] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx)[k] * cbufX[3] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx)[k] * cbufX[3] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx+1)[k] * cbufX[4] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+1)[k] * cbufX[4] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx+1)[k] * cbufX[4] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+1)[k] * cbufX[4] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx+1)[k] * cbufX[4] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+1)[k] * cbufX[4] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx+1)[k] * cbufX[4] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+1)[k] * cbufX[4] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx+2)[k] * cbufX[5] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+2)[k] * cbufX[5] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx+2)[k] * cbufX[5] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+2)[k] * cbufX[5] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx+2)[k] * cbufX[5] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+2)[k] * cbufX[5] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx+2)[k] * cbufX[5] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+2)[k] * cbufX[5] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx+3)[k] * cbufX[6] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+3)[k] * cbufX[6] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx+3)[k] * cbufX[6] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+3)[k] * cbufX[6] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx+3)[k] * cbufX[6] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+3)[k] * cbufX[6] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx+3)[k] * cbufX[6] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+3)[k] * cbufX[6] * cbufY[7] +
 
                matSrc.at<cv::Vec3b>(sy-3, sx+4)[k] * cbufX[7] * cbufY[0] + matSrc.at<cv::Vec3b>(sy-2, sx+4)[k] * cbufX[7] * cbufY[1] +
                matSrc.at<cv::Vec3b>(sy-1, sx+4)[k] * cbufX[7] * cbufY[2] + matSrc.at<cv::Vec3b>(sy, sx+4)[k] * cbufX[7] * cbufY[3] +
                matSrc.at<cv::Vec3b>(sy+1, sx+4)[k] * cbufX[7] * cbufY[4] + matSrc.at<cv::Vec3b>(sy+2, sx+4)[k] * cbufX[7] * cbufY[5] +
                matSrc.at<cv::Vec3b>(sy+3, sx+4)[k] * cbufX[7] * cbufY[6] + matSrc.at<cv::Vec3b>(sy+4, sx+4)[k] * cbufX[7] * cbufY[7] ) >> 22);// 4194304
        }
    }
}
cv::imwrite("Lanczos_1.jpg", matDst1);
 
cv::resize(matSrc, matDst2, matDst1.size(), 0, 0, 4);
cv::imwrite("Lanczos_2.jpg", matDst2);

以上代码的实现结果与cv::resize函数相同,但是执行效率非常低,只是为了详细说明插值过程。OpenCV中默认采用C++ Concurrency进行优化加速,你也可以采用TBB、OpenMP等进行优化加速。

GitHub:https://github.com/fengbingchun/OpenCV_Test/blob/master/demo/OpenCV_Test/test_opencv_funset.cpp

到此这篇关于OpenCV中resize函数插值算法的实现过程(五种)的文章就介绍到这了,更多相关OpenCV resize插值内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!

原文链接:https://blog.csdn.net/fengbingchun/article/details/17335477