本代码实现了朴素贝叶斯分类器(假设了条件独立的版本),常用于垃圾邮件分类,进行了拉普拉斯平滑。
关于朴素贝叶斯算法原理可以参考博客中原理部分的博文。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
from math import log
from numpy import *
import operator
import matplotlib
import matplotlib.pyplot as plt
from os import listdir
def loadDataSet():
postingList = [[ 'my' , 'dog' , 'has' , 'flea' , 'problems' , 'help' , 'please' ],
[ 'maybe' , 'not' , 'take' , 'him' , 'to' , 'dog' , 'park' , 'stupid' ],
[ 'my' , 'dalmation' , 'is' , 'so' , 'cute' , 'I' , 'love' , 'him' ],
[ 'stop' , 'posting' , 'stupid' , 'worthless' , 'garbage' ],
[ 'mr' , 'licks' , 'ate' , 'my' , 'steak' , 'how' , 'to' , 'stop' , 'him' ],
[ 'quit' , 'buying' , 'worthless' , 'dog' , 'food' , 'stupid' ]]
classVec = [ 0 , 1 , 0 , 1 , 0 , 1 ]
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set ([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set (document) #union of the two sets
return list (vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [ 0 ] * len (vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else : print "the word: %s is not in my Vocabulary!" % word
return returnVec
def trainNB0(trainMatrix,trainCategory): #训练模型
numTrainDocs = len (trainMatrix)
numWords = len (trainMatrix[ 0 ])
pAbusive = sum (trainCategory) / float (numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #拉普拉斯平滑
p0Denom = 0.0 + 2.0 ; p1Denom = 0.0 + 2.0 #拉普拉斯平滑
for i in range (numTrainDocs):
if trainCategory[i] = = 1 :
p1Num + = trainMatrix[i]
p1Denom + = sum (trainMatrix[i])
else :
p0Num + = trainMatrix[i]
p0Denom + = sum (trainMatrix[i])
p1Vect = log(p1Num / p1Denom) #用log()是为了避免概率乘积时浮点数下溢
p0Vect = log(p0Num / p0Denom)
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum (vec2Classify * p1Vec) + log(pClass1)
p0 = sum (vec2Classify * p0Vec) + log( 1.0 - pClass1)
if p1 > p0:
return 1
else :
return 0
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [ 0 ] * len (vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] + = 1
return returnVec
def testingNB(): #测试训练结果
listOPosts, listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))
testEntry = [ 'love' , 'my' , 'dalmation' ]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb)
testEntry = [ 'stupid' , 'garbage' ]
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print testEntry, 'classified as: ' , classifyNB(thisDoc, p0V, p1V, pAb)
def textParse(bigString): # 长字符转转单词列表
import re
listOfTokens = re.split(r '\W*' , bigString)
return [tok.lower() for tok in listOfTokens if len (tok) > 2 ]
def spamTest(): #测试垃圾文件 需要数据
docList = [];
classList = [];
fullText = []
for i in range ( 1 , 26 ):
wordList = textParse( open ( 'email/spam/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append( 1 )
wordList = textParse( open ( 'email/ham/%d.txt' % i).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append( 0 )
vocabList = createVocabList(docList)
trainingSet = range ( 50 );
testSet = []
for i in range ( 10 ):
randIndex = int (random.uniform( 0 , len (trainingSet)))
testSet.append(trainingSet[randIndex])
del (trainingSet[randIndex])
trainMat = [];
trainClasses = []
for docIndex in trainingSet:
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))
errorCount = 0
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector), p0V, p1V, pSpam) ! = classList[docIndex]:
errorCount + = 1
print "classification error" , docList[docIndex]
print 'the error rate is: ' , float (errorCount) / len (testSet)
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
print myVocabList, '\n'
# print setOfWords2Vec(myVocabList,listOPosts[0]),'\n'
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
print trainMat
p0V,p1V,pAb = trainNB0(trainMat,listClasses)
print pAb
print p0V, '\n' ,p1V
testingNB()
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_35083093/article/details/79107514