Given a collection of distinct integers, return all possible permutations.
Example:
Input: [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
这道题是求全排列问题,给的输入数组没有重复项,这跟之前的那道 Combinations 和类似,解法基本相同,但是不同点在于那道不同的数字顺序只算一种,是一道典型的组合题,而此题是求全排列问题,还是用递归 DFS 来求解。这里需要用到一个 visited 数组来标记某个数字是否访问过,然后在 DFS 递归函数从的循环应从头开始,而不是从 level 开始,这是和 Combinations 不同的地方,其余思路大体相同。这里再说下 level 吧,其本质是记录当前已经拼出的个数,一旦其达到了 nums 数组的长度,说明此时已经是一个全排列了,因为再加数字的话,就会超出。还有就是,为啥这里的 level 要从0开始遍历,因为这是求全排列,每个位置都可能放任意一个数字,这样会有个问题,数字有可能被重复使用,由于全排列是不能重复使用数字的,所以需要用一个 visited 数组来标记某个数字是否使用过,代码如下:
解法一:
class Solution {
public:
vector<vector<int>> permute(vector<int>& num) {
vector<vector<int>> res;
vector<int> out, visited(num.size(), );
permuteDFS(num, , visited, out, res);
return res;
}
void permuteDFS(vector<int>& num, int level, vector<int>& visited, vector<int>& out, vector<vector<int>>& res) {
if (level == num.size()) {res.push_back(out); return;}
for (int i = ; i < num.size(); ++i) {
if (visited[i] == ) continue;
visited[i] = ;
out.push_back(num[i]);
permuteDFS(num, level + , visited, out, res);
out.pop_back();
visited[i] = ;
}
}
};
上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]] 。
还有一种递归的写法,更简单一些,这里是每次交换 num 里面的两个数字,经过递归可以生成所有的排列情况。这里你可能注意到,为啥在递归函数中, push_back() 了之后没有返回呢,而解法一或者是 Combinations 的递归解法在更新结果 res 后都 return 了呢?其实如果你仔细看代码的话,此时 start 已经大于等于 num.size() 了,而下面的 for 循环的i是从 start 开始的,根本就不会执行 for 循环里的内容,就相当于 return 了,博主偷懒就没写了。但其实为了避免混淆,最好还是加上,免得和前面的搞混了,代码如下:
解法二:
class Solution {
public:
vector<vector<int>> permute(vector<int>& num) {
vector<vector<int>> res;
permuteDFS(num, , res);
return res;
}
void permuteDFS(vector<int>& num, int start, vector<vector<int>>& res) {
if (start >= num.size()) res.push_back(num);
for (int i = start; i < num.size(); ++i) {
swap(num[start], num[i]);
permuteDFS(num, start + , res);
swap(num[start], num[i]);
}
}
};
上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,2,1], [3,1,2]]
最后再来看一种方法,这种方法是 CareerCup 书上的方法,也挺不错的,这道题是思想是这样的:
当 n=1 时,数组中只有一个数 a1,其全排列只有一种,即为 a1
当 n=2 时,数组中此时有 a1a2,其全排列有两种,a1a2 和 a2a1,那么此时考虑和上面那种情况的关系,可以发现,其实就是在 a1 的前后两个位置分别加入了 a2
当 n=3 时,数组中有 a1a2a3,此时全排列有六种,分别为 a1a2a3, a1a3a2, a2a1a3, a2a3a1, a3a1a2, 和 a3a2a1。那么根据上面的结论,实际上是在 a1a2 和 a2a1 的基础上在不同的位置上加入 a3 而得到的。
_ a1 _ a2 _ : a3a1a2, a1a3a2, a1a2a3
_ a2 _ a1 _ : a3a2a1, a2a3a1, a2a1a3
解法三:
class Solution {
public:
vector<vector<int>> permute(vector<int>& num) {
if (num.empty()) return vector<vector<int>>(, vector<int>());
vector<vector<int>> res;
int first = num[];
num.erase(num.begin());
vector<vector<int>> words = permute(num);
for (auto &a : words) {
for (int i = ; i <= a.size(); ++i) {
a.insert(a.begin() + i, first);
res.push_back(a);
a.erase(a.begin() + i);
}
}
return res;
}
};
上述解法的最终生成顺序为:[[1,2,3], [2,1,3], [2,3,1], [1,3,2], [3,1,2], [3,2,1]]
上面的三种解法都是递归的,我们也可以使用迭代的方法来做。其实下面这个解法就上面解法的迭代写法,核心思路都是一样的,都是在现有的排列的基础上,每个空位插入一个数字,从而生成各种的全排列的情况,参见代码如下:
解法四:
class Solution {
public:
vector<vector<int>> permute(vector<int>& num) {
vector<vector<int>> res{{}};
for (int a : num) {
for (int k = res.size(); k > ; --k) {
vector<int> t = res.front();
res.erase(res.begin());
for (int i = ; i <= t.size(); ++i) {
vector<int> one = t;
one.insert(one.begin() + i, a);
res.push_back(one);
}
}
}
return res;
}
};
上述解法的最终生成顺序为:[[3,2,1], [2,3,1], [2,1,3], [3,1,2], [1,3,2], [1,2,3]]
下面这种解法就有些耍赖了,用了 STL 的内置函数 next_permutation(),专门就是用来返回下一个全排列,耳边又回响起了诸葛孔明的名言,我从未见过如此...投机取巧...的解法!
解法五:
class Solution {
public:
vector<vector<int>> permute(vector<int>& num) {
vector<vector<int>> res;
sort(num.begin(), num.end());
res.push_back(num);
while (next_permutation(num.begin(), num.end())) {
res.push_back(num);
}
return res;
}
};
上述解法的最终生成顺序为:[[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]]
Github 同步地址:
https://github.com/grandyang/leetcode/issues/46
类似题目:
参考资料:
https://leetcode.com/problems/permutations/
https://leetcode.com/problems/permutations/discuss/18462/Share-my-three-different-solutions
https://leetcode.com/problems/permutations/discuss/18255/Share-my-short-iterative-JAVA-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 46. Permutations 全排列的更多相关文章
-
[leetcode]46. Permutations全排列(给定序列无重复元素)
Given a collection of distinct integers, return all possible permutations. Input: [1,2,3] Output: [ ...
-
LeetCode - 46. Permutations
46. Permutations Problem's Link -------------------------------------------------------------------- ...
-
LeetCode 46 Permutations(全排列问题)
题目链接:https://leetcode.com/problems/permutations/?tab=Description Problem:给出一个数组(数组中的元素均不相同),求出这个数组 ...
-
【LeetCode】Permutations(全排列)
这道题是LeetCode里的第46道题. 题目要求: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3 ...
-
[leetcode]47. Permutations全排列(给定序列有重复元素)
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
-
46. Permutations (全排列)
Given a collection of distinct numbers, return all possible permutations. For example,[1,2,3] have t ...
-
46 Permutations(全排列Medium)
题目意思:全排列 思路:其实看这题目意思,是不太希望用递归的,不过还是用了递归,非递归的以后再搞吧 ps:vector这玩意不能随便返回,开始递归方法用vector,直接到500ms,换成void,到 ...
-
LeetCode 046 Permutations 全排列
Given a collection of distinct numbers, return all possible permutations.For example,[1,2,3] have th ...
-
[LeetCode] 47. Permutations II 全排列 II
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
随机推荐
-
快递鸟物流单号自动识别接口JAVA对接demo
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ...
-
iOS开发——图形与动画篇OC篇&;图层基本上动画
图层的一些基本动画效果 #define kRadianToDegrees (radian) (radian * 180.0) / (M_PI) //闪烁 [self.testView.layer ad ...
-
进阶C#?
玩了几年的编程了,大四了.本来不想考研,我老师找我谈几次,最近准备考研.从一开始玩java,接触.net中的C#,aps.net,到接触linux,太多太多了. 本来我们专业不是纯计算机的,但是和计算 ...
-
nmap svn
http://*.com/questions/13296361/nmap-and-svnlib-client-not-working-together http://nmap. ...
-
使用Jersey实现图片服务器与应用服务器分离
现在模拟一下Jersey从客户端发送图片到服务器. 1.Tomcat准备 (1)解压一个新的Tomcat作为图片服务器,然后修改端口号(有3处). (2)然 ...
-
【css】3d导航效果
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
-
数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...
-
【原】通过Dubbo注解实现RPC调用
启动Dubbo服务有2个方式,1是通过xml配置,2是通过注解来实现,这点和Spring相似. 采用XML配置如下: <?xml version="1.0" encoding ...
-
“北航Clubs”项目汇报
一.项目展示 二.用户的痛点与需求 1.北航学生,在百团大战之后,很难再有渠道加入社团,了解社团活动,简直如蒙在鼓里! 2.当你周末想参加一些活动,充实一下枯燥的求学生活时,却发现不知道有哪些社团有活 ...
-
USB学习笔记-总结
1. # ls /sys/bus/usb/devices/解析:1-0:1.0 1-1 1-1:1.0 2-0:1.0 2-1 2-1:1.0 2-2 2-2.1 2-2:1.0 2-2.1:1.0 ...