Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找。
一、Prim(普里姆算法)算法:
Prim算法实现的是找出一个有权重连通图中的最小生成树,即:具有最小权重且连接到所有结点的树。(强调的是树,树是没有回路的)。
Prim算法是这样来做的:
首先以一个结点作为最小生成树的初始结点,然后以迭代的方式找出与最小生成树中各结点权重最小边,并加入到最小生成树中。加入之后如果产生回路则跳过这条边,选择下一个结点。当所有结点都加入到最小生成树中之后,就找出了连通图中的最小生成树了。
Prim算法最小生成树查找过程:
C语言实现:
#include <stdio.h>
#include <stdlib.h>
#define maxint 1073741824
int main()
{
FILE *input=fopen("input.txt","r"),*out=fopen("output.txt","w");
int n,m,i,j,x,y,w;
fscanf(input,"%d %d",&n,&m);
int map[n][n],E[m][3],tree[m],Mst[n][n];
/*Mst表示最小生成树的邻接矩阵,map是原图,E是边集,其中E[0]和E[1]是边的两个顶点,E[2]是边的权值,tree是用于判断原图的点是否在最小生成树中*/
memset(tree,0,sizeof(tree));
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
map[i][j]=maxint;
Mst[i][j]=maxint;
}
E[i][0]=E[i][1]=maxint;
}
for(i=0; i<m; i++)
{
fscanf(input,"%d %d %d",&x,&y,&w);
if(w<map[x][y])
{
map[x][y]=w;
map[y][x]=w;
}
}
int min=maxint,next=0,now=0,k=0;
tree[0]=1;
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
if(map[now][j]!=maxint && tree[j]==0)
{
E[k][0]=now;
E[k][2]=map[now][j];
E[k++][1]=j;
}
}
for(j=0; j<k; j++)
{
if(E[j][2]<min && tree[E[j][1]]==0)
{
min=E[j][2];
x=E[j][0];
y=E[j][1];
next=y;
}
}
tree[next]=1;
now=next;
Mst[x][y]=map[x][y];
Mst[y][x]=map[y][x];
min=maxint;
}
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
if(Mst[i][j]==maxint) //判断两点是否连通
fprintf(out,"00 "); //美化输出,不必多加探究
else
{
fprintf(out,"%d ",Mst[i][j]); //输出生成树的邻接矩阵,要输出树的自己可以根据邻接矩阵的数据进行加工
}
}
fprintf(out,"\n");
}
fclose(input);
fclose(out);
return 0;
} // 程序未考虑不是连通图的情况,修改很简单,判断生成树的节点数量是否等于原图的节点数量
//如果小于(不会有大于)则本图不是连通图
//其实prim和迪杰斯特拉算法核心有相似之处
二、Kruskal(克鲁斯卡尔)算法:
Kruskal算法与Prim算法的不同之处在于,Kruskal在找最小生成树结点之前,需要对所有权重边做从小到大排序。将排序好的权重边依次加入到最小生成树中,如果加入时产生回路就跳过这条边,加入下一条边。当所有结点都加入到最小生成树中之后,就找出了最小生成树。
C语言实现:
/* Kruskal.c
Copyright (c) 2002, 2006 by ctu_85
All Rights Reserved.
I am sorry to say that the situation of unconnected graph is not concerned
*/
#include "stdio.h"
#define maxver 10
#define maxright 100
int G[maxver][maxver],record=0,touched[maxver][maxver];
int circle=0;
int FindCircle(int,int,int,int);
int main()
{
int path[maxver][2],used[maxver][maxver]; int i,j,k,t,min=maxright,exsit=0;
int v1,v2,num,temp,status=0;
restart:
printf("Please enter the number of vertex(s) in the graph:\n");
scanf("%d",&num);
if(num>maxver||num<0)
{
printf("Error!Please reinput!\n");
goto restart;
}
for(j=0;j<num;j++)
for(k=0;k<num;k++)
{
if(j==k)
{
G[j][k]=maxright;
used[j][k]=1;
touched[j][k]=0;
}
else
if(j<k)
{
re:
printf("Please input the right between vertex %d and vertex %d,if no edge exists please input -1:\n",j+1,k+1);
scanf("%d",&temp);
if(temp>=maxright||temp<-1)
{
printf("Invalid input!\n");
goto re;
}
if(temp==-1)
temp=maxright;
G[j][k]=G[k][j]=temp;
used[j][k]=used[k][j]=0;
touched[j][k]=touched[k][j]=0;
}
}
for(j=0;j<num;j++)
{
path[j][0]=0;
path[j][1]=0;
}
for(j=0;j<num;j++)
{
status=0;
for(k=0;k<num;k++)
if(G[j][k]<maxright)
{
status=1;
break;
}
if(status==0)
break;
}
for(i=0;i<num-1&&status;i++)
{
for(j=0;j<num;j++)
for(k=0;k<num;k++)
if(G[j][k]<min&&!used[j][k])
{
v1=j;
v2=k;
min=G[j][k];
}
if(!used[v1][v2])
{
used[v1][v2]=1;
used[v2][v1]=1;
touched[v1][v2]=1;
touched[v2][v1]=1;
path[0]=v1;
path[1]=v2;
for(t=0;t<record;t++)
FindCircle(path[t][0],path[t][0],num,path[t][0]);
if(circle)
{/*if a circle exsits,roll back*/
circle=0;
i--;
exsit=0;
touched[v1][v2]=0;
touched[v2][v1]=0;
min=maxright;
}
else
{
record++;
min=maxright;
}
}
}
if(!status)
printf("We cannot deal with it because the graph is not connected!\n");
else
{
for(i=0;i<num-1;i++)
printf("Path %d:vertex %d to vertex %d\n",i+1,path[0]+1,path[1]+1);
}
return 1;
}
int FindCircle(int start,int begin,int times,int pre)
{ /* to judge whether a circle is produced*/
int i;
for(i=0;i<times;i++)
if(touched[begin]==1)
{
if(i==start&&pre!=start)
{
circle=1;
return 1;
break;
}
else
if(pre!=i)
FindCircle(start,i,times,begin);
else
continue;
}
return 1;
}
无疑,Kruskal算法在效率上要比Prim算法快,因为Kruskal只需要对权重边做一次排序,而Prim算法则需要做多次排序。尽管Prim算法每次做的算法涉及的权重边不一定会涵盖连通图中的所有边,但是随着所使用的排序算法的效率的提高,Kruskal算法和Prim算法之间的差异将会清晰的显性出来。