枚举子集的3种方式 -- C++描述

时间:2022-11-12 20:21:32

要求:

  给定一个集合,枚举所有可能的子集。此处的集合是不包含重复元素的。

Method0: 增量构造法

  思路:每次选取一个元素至集合中,为了避免枚举重复的集合,此处要采用定序技巧 -- 除了第一个元素,每次选取必须要比集合中的前一个元素要大!

  

// A 为原集合;
// B 为子集,每次调用函数即会打印一次
// cur 为子集元素个数
void print_subset0(int *A, int *B, int N, int cur) {
for(int i=0; i<cur; i++) {
printf("%5d", B[i]);
}
printf("\n");
if( cur < N ) {
for( int i=0; i<N; i++ ) {
if( !cur || A[i] > B[cur-1] ) {
B[cur] = A[i];
print_subset0(A, B, N, cur+1);
}
}
}
} int main() {
int Length = 3;
int A[Length] = {1, 3, 2};
printf("Method0:\n");
int B[Length] = {0};
print_subset0(A, B, Length, 0);
printf("\n");
return 0;
}

  采用的是递归调用,但此处不需要return语句,因为当没有元素可用于枚举时,就不会调用函数,也就是不会继续递归。

   此函数输出的子集中是包含空集的,如果不想用空集,则需判断 cur 是否为0,不为0才打印子集

   测试样例的输出结果(包含空集):

    枚举子集的3种方式 -- C++描述

Method1: 位向量法

  思路:1个容量为N的集合,每个位置0~N-1,对于每个子集,要么被选中,要么没被选中。枚举每一个位置的状态,可得到各种子集。

  

// A 为原集合;
// A 为原集合
// used为当前A中每个位置的元素的状态(选中或未被选中)
// cur代表现在枚举A[cur]的状态
void print_subset1(int *A, int *used, int N, int cur) {
if( cur == N ) {
for(int i=0; i<N; i++) {
if( used[i] ) {
printf("%5d", A[i]);
}
}
printf("\n");
return ;
}
used[cur] = 0;
print_subset1(A, used, N, cur+1);
used[cur] = 1;
print_subset1(A, used, N, cur+1);
} int main() {
int Length = 3;
int A[Length] = {1, 3, 2}; printf("Method1:\n");
int B[Length] = {0};
print_subset1(A, B, Length, 0);
printf("\n"); return 0;
}

  同样是递归枚举,这里需要用return终止递归,终止条件就是cur == N即枚举了一种子集,然后输出  

  此函数的输出是包含空集的,如果不想要空集,则需要判断used函数是否全为0,如果全为0,则不输出

  样例输出(包含空集):

    枚举子集的3种方式 -- C++描述

Method10: 二进制法

  类似于位向量法,同样也是枚举各个位置的状态,但这次用二进制表示,二进制长度为N,与原集合大小相同。二进制的第 i 位代表原集合中的第 i 位是否被选中,枚举各种情况。集合大小为N,就是2的N次种方式。

  

void print_subset10(int *A, int N, int seq) {
for(int i=0; i<N; i++) {
if( seq & (1<<i) ) {
printf("%5d", A[i]);
}
}
printf("\n");
} int main() {
int Length = 3;
int A[Length] = {1, 3, 2};
printf("Method10:\n");
for(int i=0; i<(1<<Length); i++) {
print_subset10(A, Length, i);
}
printf("\n");
return 0;
}

  这种方式很好写,也很好记,但问题是,因为函数中的形参seq是int型的,所以N最大也就只能32,如果long long,那N也只能最大64,再超过64,就需要用大数或其它表示方式表示了。

   如果不想要空集,可以将main函数中的 i 从1枚举起。

  样例输出结果(包含空集):

    枚举子集的3种方式 -- C++描述

参考资料: 《算法竞赛入门经典(第2版)》

枚举子集的3种方式 -- C++描述的更多相关文章

  1. Java Enum枚举 遍历判断 四种方式(包括 Lambda 表达式过滤)

    示例代码如下: package com.miracle.luna.lambda; import java.util.Arrays; /** * @Author Miracle Luna * @Date ...

  2. iOS中枚举定义的三种方式

    最简单的方式 typedef enum{ num1 = 0, num2 = 1, num3 = 2 }num; 同时我们还可以使用NS_ENUM的方式定义枚举 typedef NS_ENUM (NSI ...

  3. Java Array数组 遍历 四种方式(包含 Lambda 表达式遍历)

    示例代码如下: package com.miracle.luna.lambda; import java.util.Arrays; /** * @Author Miracle Luna * @Date ...

  4. Java List集合 遍历 四种方式(包含 Lambda 表达式遍历)

    示例代码如下: package com.miracle.luna.lambda; import java.util.ArrayList; import java.util.List; /** * @A ...

  5. Java Map集合 遍历 五种方式(包含 Lambda 表达式遍历)

    示例代码如下: package com.miracle.luna.lambda; import java.util.HashMap; import java.util.Iterator; import ...

  6. ASP&period;NET Core 四种方式绑定枚举值

    前言 本节我们来讲讲在ASP.NET Core MVC又为我们提供了哪些方便,之前我们探讨过在ASP.NET MVC中下拉框绑定方式,这节我们来再来重点看看枚举绑定的方式,充分实现你所能想到的场景,满 ...

  7. verilog描述表决器的两种方式简易分析

    命题:设计一个三变量表决器.真值表如下: 可以写出并简化得出公式:F=AB+BC+AC. 以下是两种算法: 第一种:仅从算法方面描述为:A.B.C的和大于1则输出结果为1,否则为0:源码如下: mod ...

  8. 《JS高程》创建对象的7种方式(完整版)

    一.理解对象 ECMA-262定义对象:无序属性的集合,其属性可以包含基本值.对象或者属性. 我们可以把 ECMAScript 的对象想象成 散列表:无非就是一组 名值对,其中值可以是数据或函数. 创 ...

  9. uva1354 天平难题 【位枚举子集】&vert;&vert;【huffman树】

    题目链接:https://vjudge.net/contest/210334#problem/G 转载于:https://blog.csdn.net/todobe/article/details/54 ...

随机推荐

  1. 近期微博吐槽言论存档,涉及&OpenCurlyDoubleQuote;性能优化”、C&plus;&plus;陋习等

    写C++程序的几个陋习:class 名以大写 C 开头,例如 CDate:成员变量以 m_ 开头:变量采用匈牙利命名法:不知道何时禁用 copy-ctor/assign operator.前三个可能是 ...

  2. startssl&comma;免费的ssl证书申请及注意事项

    免费的ssl证书,https://www.startssl.com/ 安装到IIS和Nginx有所不同.原文 http://blog.newnaw.com/?p=1232 ------------转自 ...

  3. &lbrack;Effective C&plus;&plus; --029&rsqb;为&OpenCurlyDoubleQuote;异常安全”而努力是值得的

    假设有个class用来表现夹带背景图案的GUI菜单单,这个class用于多线程环境,所以它有个互斥器(mutex)作为并发控制用: class PrettyMenu{ public: ... void ...

  4. 利用后缀数组&lpar;suffix array&rpar;求最长公共子串&lpar;longest common substring&rpar;

    摘要:本文讨论了最长公共子串的的相关算法的时间复杂度,然后在后缀数组的基础上提出了一个时间复杂度为o(n^2*logn),空间复杂度为o(n)的算法.该算法虽然不及动态规划和后缀树算法的复杂度低,但其 ...

  5. nginx 使用过程中一些基础性问题总结

    最近闲着无事,玩了下nginx.但本人在实践的过程中也遇到了一些问题,如,大家都知道应用服务器的处理都是无状态的,而nginx做了请求分发,我们在当前web服务器做得提交操作,可能下一刻就跑到另外一台 ...

  6. 一道js题(引用类型、基本类型、包装对象、函数赋值)

    var a = 1; var obj = {     b: 2 }; var fn = function () {}; fn.c = 3;   function test(x, y, z) {     ...

  7. Java 面试总结(一) —— 面试常问的关键字总结

    关键字: final finalize finally throws和throw static关键字的作用 abstract 和 interface super 和 this synchronize ...

  8. 2017 CCPC Qinhuangdao Site

    A. Balloon Robot 假设机器人$0$时刻位于$0$号位置,那么每个气球所需的时间为$(s_a-b)\bmod m$. 将所有气球按这个时间排序,枚举每个气球的时间作为偏移量,得出最优解即 ...

  9. php 中的秒杀

    控制器层 //秒杀 首先要判断库存 其次高并发 然后入库 public function goods_do() { $gid=input("get.gid"); $user_nam ...

  10. vue&lowbar;模板渲染

    渲染 当获取到后端数据后,我们会把它按照一定的规则加载到写好的模板中,输出成在浏览器中显示的HTML,这个过程就称之为渲染. vue.js是在前端(即浏览器内)进行的模板渲染. 前后端渲染对比 前端渲 ...