人脸检测? 对Python来说太简单, 调用dlib包就可以完成

时间:2023-12-18 14:58:14

人脸检测? 对Python来说太简单, 调用dlib包就可以完成

“Dlib 是一个现代化的 C ++ 工具包,包含用于创建复杂软件的机器学习算法和工具 ” 。它使您能够直接在 Python 中运行许多任务,其中一个例子就是人脸检测。

安装 dlib 并不像只做一个 “pip install dlib” 那么简单,因为要正确配置和编译 dlib ,您首先需要安装其他系统依赖项。如果你按照这里描述的步骤,它应该很容易让 dlib 启动并运行。(在本文中,我将介绍如何在 Mac 上安装 dlib ,但如果您使用的是 Ubuntu ,请务必查看相关资源部分的链接。)

你需要确定的第一件事是你已经安装和更新了 Hombrew 。如果您需要安装它,请将其粘贴到终端中:

1.      $ /usr/bin/ruby -e  "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

或者,如果您需要更新 Hombrew ,请输入以下内容:

1.      $ brew  update 

您现在可以使用 Homebrew 来安装 CMake , Boost.Python ,以及在您的系统中正确配置和编译 dlib 所需的两个依赖关系:

1.      $ brew install cmake

2.      $ brew install boost-python

最后,您需要手动下载并安装 XQuartz 。

您现在已准备好安装 dlib 。我们将通过首先为这个项目创建一个孤立的虚拟环境来做到这一点。我将使用 virtualenv ,但您可以使用任何您熟悉的虚拟环境工具,包括 Python 的 venv 模块。需要 scikit-image 库才能读取我们稍后将传递给 dlib 的图像文件,因此我们还需要 pip 安装它:

1.      $ virtualenv venv_dlib

2.      $ source venv_dlib / bin / activate

3.      $ pip install scikit-image

4.      $ pip install dlib

就是这样。有了这个,你应该有可用的 dlib 。

Dlib

Dlib 提供了不同的脸部检测算法。我将在这里使用的是基于 CNN 的人脸检测器。您可以下载预训练模型: https : //github.com/davisking/dlib-models 。由于使用此模型的计算成本很高,因此最好在 GPU 上执行以下代码。使用 CPU 也可以,但速度会更慢。

要在下面的要点中运行人脸检测代码,我建议首先在虚拟环境中再安装两个库。这些库将使与代码交互和可视化结果更容易:

1.      $ pip install matplotlib

2.      $ pip install jupyterlab

安装完库后,您需要确保:

·              下载预训练模型( http://dlib.net/files/mmod_human_face_detector.dat.bz2 )并将其存储在项目的根目录中

·              创建一个名为 'faces' 的新目录,在该目录中存储带有希望检测的脸部的 .jpg 。

有了这个,你终于准备好开始在图片中检测脸部了!您可以通过在 Jupyter Notebook 中运行以下代码来完成此操作

1.      import dlib

2.          import matplotlib.patches  as  patches

3.          import matplotlib.pyplot  as  plt

4.           from  pathlib import Path

5.           from  skimage import io

6.          %matplotlib inline

7.          #  Load  trained model

8.          cnn_face_detector = dlib.cnn_face_detection_model_v1(

9.           'mmod_human_face_detector.dat' )

10.        #  Function   to  detect  and  show faces  in  images

11.        def detect_face_dlib(img_path, ax):

12.        #  Read  image  and  run algorithm

13.        img = io.imread(img_path)

14.        dets = cnn_face_detector(img, 1)

15.        # If there were faces detected, show them

16.        if len(dets) > 0:

17.         for  d  in  dets:

18.        rect = patches.Rectangle(

19.        (d.rect. left (), d.rect. top ()),

20.        d.rect.width(),

21.        d.rect.height(),

22.        fill= False ,

23.        color= 'b' ,

24.        lw= '2' )

25.        ax.add_patch(rect)

26.        ax.imshow(img)

27.        ax.set_title(str(img_path).split( '/' )[-1])

28.        # Path  to  images

29.        images = list(Path( 'faces' ).glob( '*.jpg' ))

30.        # Show results

31.        fig = plt.figure(figsize=(15, 5))

32.         for  i, img  in  enumerate(images):

33.        ax = fig.add_subplot(1, len(images), i+1)

34.        detect_face_dlib(img, ax)

结果

在运行代码之后,您应该看到图像中的脸部周围出现蓝色方块,如果您问我,考虑到我们只写了几行代码,这非常棒!

python学习交流群:125240963

原文链接:http://www.linuxmysql.com/23/2018/829.htm?utm_source=tuicool&utm_medium=referral