通过weka.jar包来进行数据预处理

时间:2022-11-11 18:08:24

前言:注意首先要将weka.jar包加载到相应的路径中去。程序中的数据也是用的weka自带的数据。

扩展:eclipse添加jar包的操作方法:

打开eclipse ,在对应的工程下右击,选择Build Path ->选择Configure Build Path  ->选择Libraries  ->点击Add External JARs  ->然后到你的jar包所在路径选择它。即可。

一、特征选择

package learning;

import weka.attributeSelection.ASEvaluation;
import weka.attributeSelection.InfoGainAttributeEval;
import weka.attributeSelection.Ranker;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSink;
import weka.core.converters.ConverterUtils.DataSource;
import weka.filters.Filter;
import weka.filters.supervised.attribute.AttributeSelection; /**feature selection via weka
*
* @author wenbaoli
*
*/
public class featureSelect { /**
*
* @param arg
*/
public static void main(String[] arg){ try { System.out.println("++++++++++++Example3:Feature Selection Via Weka.+++++++++"); System.out.println("Step1:load data...");
String fn = "E:/weka/data/iris.arff";
DataSource source = new DataSource(fn);
Instances instances = source.getDataSet(); System.out.println("Step2:feature selction...");
featureSelect fs = new featureSelect(); int k = 2;
AttributeSelection as = new AttributeSelection(); Ranker rank = new Ranker();
rank.setThreshold(0.0);
rank.setNumToSelect(k); ASEvaluation ae = new InfoGainAttributeEval(); as.setEvaluator(ae);
as.setSearch(rank);
as.setInputFormat(instances);
Instances reductData = Filter.useFilter(instances, as); System.out.println("Step3:保存规约后的数据到新文件...");
DataSink.write("E:/weka/data/iris_reducted.arff", reductData);
System.out.println("Finished..."); } catch (Exception e) {
e.printStackTrace();
}
} }

二、缺失值处理

package learning;

import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSink;
import weka.core.converters.ConverterUtils.DataSource; /**Missing value Handling via weka
*
* @author wenbaoli
*
*/
public class missingHandle { /**
*
* @param arg
*/
public static void main(String[] arg) { try {
System.out.println("+++++++++++++Example 2 :Missing Value Handling.++++++++++++++"); System.out.println("Step1:load data..."); String fn = "E:weka/data/labor.arff"; DataSource source = new DataSource(fn); Instances instances = source.getDataSet();
int dim = instances.numAttributes();
int num = instances.numInstances(); System.out.println("Step2:缺失值处理...");
double[] meanV = new double[dim];
for (int i = 0; i < meanV.length; i++) {
meanV[i] = 0;
int count = 0;
for (int j = 0; j < num; j++) {
if(!instances.instance(j).isMissing(i)){
meanV[i] += instances.instance(j).value(i);
count++;
}
}
meanV[i] = meanV[i]/count;
System.out.println(meanV[i]);
} for (int i = 0; i < meanV.length; i++) {
meanV[i] = 0;
int count = 0;
for (int j = 0; j < num; j++) {
if(instances.instance(j).isMissing(i)){
instances.instance(j).setValue(i, meanV[i]);
}
} } System.out.println("Step3:保存数据到新文件..."); DataSink.write("E:weka/data/labor_missingValueHandled.arff", instances);
System.out.println("Finished.");
} catch (Exception e) {
e.printStackTrace();
} }
}

三、归一化处理

package learning;

import weka.core.Attribute;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSink;
import weka.core.converters.ConverterUtils.DataSource;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.Normalize; /**normalize data via weka
*
* @author wenbaoli
*
*/
public class normalizeTest { /**
*
* @param arg
*/
public static void main(String[] arg) { String file = "cpu.arff";
String file_norm = "norm_" + file;
//对数据进行归一化
try {
System.out.println("+++++++++++++Example 1 : Normalize Data via weka.+++++++++"); System.out.println("Step1:读取数据...");
DataSource source = new DataSource("E:/Weka/data/" + file);
Instances instances = source.getDataSet(); System.out.println("Step2:原数据打印...");
System.out.println("---------------------------------");
int attributeNo = instances.numAttributes();
for (int i = 0; i < attributeNo; i++) {
Attribute attr = instances.attribute(i);
System.out.print(attr.name() + "\t"); }
System.out.println(); int instanceNo = instances.numInstances();
for (int i = 0; i < instanceNo; i++) {
Instance ins = instances.instance(i);
System.out.print(ins.toString() + "\t");
System.out.println();
} System.out.println("Step3:归一化...");
Normalize norm = new Normalize();
norm.setInputFormat(instances); //归一化关键步骤:
Instances newInstances = Filter.useFilter(instances, norm); System.out.println("Step4:归一化之后的数据(打印)...");
System.out.println("---------------------------------"); //打印属性名
int numOfAttributes = newInstances.numAttributes();
for (int i = 0; i < numOfAttributes; i++) {
Attribute attribute = newInstances.attribute(i);
System.out.print(attribute.name() + "\t"); }
System.out.println(); //打印实例
int numOfInstance = newInstances.numInstances();
for (int i = 0; i < numOfInstance ; i++) {
Instance instance = newInstances.instance(i);
System.out.print(instance.toString() + "\t");
System.out.println();
}
//发现一个问题:这把标签label也给归一化了。。。。。。。。。。这样可以吗??????? System.out.println("Step5:保存归一化的新数据到新文件...");
System.out.println("-----------------------");
DataSink.write("E:/Weka/data/" +file_norm, newInstances);
System.out.println("Congratulations.");
} catch (Exception e) {
e.printStackTrace();
} }
}

通过weka.jar包来进行数据预处理的更多相关文章

  1. BeanShell使用json&period;jar包处理Json数据

    环境准备 ①Jmeter版本 ,JDK ②前置条件:将json.jar包置于..\lib\下, 如果还是报错,可以将该jar包添加到测试计划的Library中:否则会报:Typed variable ...

  2. weka数据预处理

    Weka数据预处理(一) 对于数据挖掘而言,我们往往仅关注实质性的挖掘算法,如分类.聚类.关联规则等,而忽视待挖掘数据的质量,但是高质量的数据才能产生高质量的挖掘结果,否则只有"Garbag ...

  3. jdbc数据连接池dbcp要导入的jar包

    jdbc数据连接池dbcp要导入的jar包 只用导入commons-dbcp-x.y.z.jarcommons-pool-a.b.jar

  4. Excel文件按照指定模板导入数据(用jxl&period;jar包)

        本文中的方法只适合Excel2003,要读取Excel2007最好使用poi.jar,据说poi.jar还在更新,jxl.jar已经不更新了,处理Excel文件的读写问题最好还是学习poi.j ...

  5. 总结:独立开发 jar 包组件——功能主要是支持查询数据库的所有表数据

    前言:开发完一个项目,必定总结,这次就将总结记录在博客,第一次开发组件 jar 包,包含前端,后台,中间遇到好多问题,这里一一描述.转载请注明出处: https://www.cnblogs.com/y ...

  6. json-lib-2&period;4-jdk15&period;jar所需全部JAR包&period;rar java jsoup解析开彩网api接口json数据实例

    json-lib-2.4-jdk15.jar所需全部JAR包.rar  java jsoup解析开彩网api接口json数据实例 json-lib-2.4-jdk15.jar所需全部JAR包.rar  ...

  7. 使用C&num;利用cmd来调用java jar包获取其中的数据

    其实也很简单,就是在C#中构建一个Process,启动jar包,并且给jar包传递参数 因为我并没有怎么学过JAVA,所以只写了个很小的Demo,就是根据传入的参数获取对应的数据 以下是JAVA De ...

  8. Java 使用poi导入excel,结合xml文件进行数据验证的例子&lpar;增加了jar包&rpar;

    ava 使用poi导入excel,结合xml文件进行数据验证的例子(增加了jar包) 假设现在要做一个通用的导入方法: 要求: 1.xml的只定义数据库表中的column字段,字段类型,是否非空等条件 ...

  9. WEKA中的数据预处理

    数据预处理包括数据的缺失值处理.标准化.规范化和离散化处理. 数据的缺失值处理:weka.filters.unsupervised.attribute.ReplaceMissingValues. 对于 ...

随机推荐

  1. Java消息队列--ActiveMq 实战

    1.下载安装ActiveMQ ActiveMQ官网下载地址:http://activemq.apache.org/download.html ActiveMQ 提供了Windows 和Linux.Un ...

  2. spring 第一篇(1-1):让java开发变得更简单&lpar;下&rpar;转

    spring 第一篇(1-1):让java开发变得更简单(下) 这个波主虽然只发了几篇,但是写的很好 上面一篇文章写的很好,其中提及到了Spring的jdbcTemplate,templet方式我之前 ...

  3. 比较compareTo与equals及&equals;&equals;的区别

    1.compareTo: 附上:源码: public int compareTo(String anotherString) {         int len1 = value.length;   ...

  4. UIAlertController使用的一个坑

    / // 创建一个确定按钮”一定要注意不能在提醒控制器的按钮的点击方法内部用到提醒控制器自己”,不能把下面这句话放在block内部”不然会死循环,导致警告控制器不能销毁" UITextFie ...

  5. ZOJ 2710 Two Pipelines

    计算几何+贪心 #include<cstdio> #include<cstring> #include<cmath> #include<algorithm&g ...

  6. Bzoj超级经验大放送题集(好评如潮哦~~~)

    其实这些是因为没有数据才形成的...唯一可惜的是这些都是需要300软妹币才能打开的萌萌哒权限题*^_^* 好啦,吾来教你如何快速AC么么哒 pascal: 1 begin end. //Pascal ...

  7. windows共享虚拟机ubuntu目录

    1)安装 sudo apt-get install samba 2)配置文件vi /etc/samba/smb.conf 添加如下 3)启动服务 sudo service smbd start 4)w ...

  8. Spring Cloud实战的代码和视频位置

    大家好,本博文的连接里包含了Spring Cloud实战的代码和视频位置. 代码下载连接: 视频下载连接:

  9. html position定位

    一.fixed居中 css样式代码:{ position:fixed left: 0; right: 0; margin:0 auto; width:300px } 二.Position属性有四个值: ...

  10. js 时间的国际化处理

    //1 获取相对于0时区的当地时区(默认得到的是分钟,可能是负数;北京市东八+8 美国华盛顿为西五-5),中国比美国快13小时 //js默认转换的时候自带时区,只要数据库存的是时间戳,显示的时候不用刻 ...