数据挖掘方面重要会议的最佳paper集合

时间:2022-11-11 17:54:56

数据挖掘方面重要会议的最佳paper集合,兴许将陆续分析一下内容:

主要有KDD、SIGMOD、VLDB、ICML、SIGIR

KDD (Data Mining)

2013

Simple and Deterministic Matrix
Sketching

Edo Liberty, Yahoo! Research

2012

Searching
and Mining Trillions of Time Series Subsequences under Dynamic Time Warping

Thanawin Rakthanmanon, University of California Riverside; et al.

2011

Leakage
in Data Mining: Formulation, Detection, and Avoidance

Shachar Kaufman, Tel-Aviv University; et al.

2010

Large linear classification
when data cannot fit in memory

Hsiang-Fu Yu, National * University; et al.

Connecting the dots between news
articles

Dafna Shahaf & Carlos Guestrin, Carnegie Mellon University

2009

Collaborative Filtering with
Temporal Dynamics

Yehuda Koren, Yahoo! Research

2008

Fastanova:
an efficient algorithm for genome-wide association study

Xiang Zhang, University of North Carolina at Chapel Hill; et al.

2007

Predictive
discrete latent factor models for large scale dyadic data

Deepak Agarwal & Srujana Merugu, Yahoo! Research

2006

Training linear SVMs in linear time

Thorsten Joachims, Cornell University

2005

Graphs
over time: densification laws, shrinking diameters and possible explanations

Jure Leskovec, Carnegie Mellon University; et al.

2004

A probabilistic
framework for semi-supervised clustering

Sugato Basu, University of Texas at Austin; et al.

2003

Maximizing the
spread of influence through a social network

David Kempe, Cornell University; et al.

2002

Pattern discovery
in sequences under a Markov assumption

Darya Chudova & Padhraic Smyth, University of California Irvine

2001

Robust space
transformations for distance-based operations

Edwin M. Knorr, University of British Columbia; et al.

2000

Hancock:
a language for extracting signatures from data streams

Corinna Cortes, AT&T Laboratories; et al.

1999

MetaCost:
a general method for making classifiers cost-sensitive

Pedro Domingos, Universidade Técnica de Lisboa

1998

Occam's Two Razors: The
Sharp and the Blunt

Pedro Domingos, Universidade Técnica de Lisboa

1997

Analysis
and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Di...

Foster Provost & Tom Fawcett, NYNEX Science and Technology

SIGMOD (Databases)

2013

Massive Graph Triangulation

Xiaocheng Hu, The Chinese University of *; et al.

2012

High-Performance
Complex Event Processing over XML Streams

Barzan Mozafari, Massachusetts Institute of Technology; et al.

2011

Entangled
Queries: Enabling Declarative Data-Driven Coordination

Nitin Gupta, Cornell University; et al.

2010

FAST:
fast architecture sensitive tree search on modern CPUs and GPUs

Changkyu Kim, Intel; et al.

2009

Generating example data for
dataflow programs

Christopher Olston, Yahoo! Research; et al.

2008

Serializable isolation for
snapshot databases

Michael J. Cahill, University of Sydney; et al.

Scalable Network
Distance Browsing in Spatial Databases

Hanan Samet, University of Maryland; et al.

2007

Compiling mappings
to bridge applications and databases

Sergey Melnik, Microsoft Research; et al.

Scalable Approximate
Query Processing with the DBO Engine

Christopher Jermaine, University of Florida; et al.

2006

To
search or to crawl?: towards a query optimizer for text-centric tasks

Panagiotis G. Ipeirotis, New York University; et al.

2004

Indexing
spatio-temporal trajectories with Chebyshev polynomials

Yuhan Cai & Raymond T. Ng, University of British Columbia

2003

Spreadsheets in RDBMS for OLAP

Andrew Witkowski, Oracle; et al.

2001

Locally
adaptive dimensionality reduction for indexing large time series databases

Eamonn Keogh, University of California Irvine; et al.

2000

XMill: an efficient compressor
for XML data

Hartmut Liefke, University of Pennsylvania

Dan Suciu, AT&T Laboratories

1999

DynaMat:
a dynamic view management system for data warehouses

Yannis Kotidis & Nick Roussopoulos, University of Maryland

1998

Efficient
transparent application recovery in client-server information systems

David Lomet & Gerhard Weikum, Microsoft Research

Integrating
association rule mining with relational database systems: alternatives and implications

Sunita Sarawagi, IBM Research; et al.

1997

Fast parallel
similarity search in multimedia databases

Stefan Berchtold, University of Munich; et al.

1996

Implementing data cubes efficiently

Venky Harinarayan, Stanford University; et al.

VLDB (Databases)

2013

DisC
Diversity: Result Diversification based on Dissimilarity and Coverage

Marina Drosou & Evaggelia Pitoura, University of Ioannina

2012

Dense
Subgraph Maintenance under Streaming Edge Weight Updates for Real-time Story Identification

Albert Angel, University of Toronto; et al.

2011

RemusDB: Transparent
High-Availability for Database Systems

Umar Farooq Minhas, University of Waterloo; et al.

2010

Towards Certain Fixes
with Editing Rules and Master Data

Shuai Ma, University of Edinburgh; et al.

2009

A Unified Approach
to Ranking in Probabilistic Databases

Jian Li, University of Maryland; et al.

2008

Finding Frequent Items in Data
Streams

Graham Cormode & Marios Hadjieleftheriou, AT&T Laboratories

Constrained Physical Design Tuning

Nicolas Bruno & Surajit Chaudhuri, Microsoft Research

2007

Scalable
Semantic Web Data Management Using Vertical Partitioning

Daniel J. Abadi, Massachusetts Institute of Technology; et al.

2006

Trustworthy
Keyword Search for Regulatory-Compliant Records Retention

Soumyadeb Mitra, University of Illinois at Urbana-Champaign; et al.

2005

Cache-conscious
Frequent Pattern Mining on a Modern Processor

Amol Ghoting, Ohio State University; et al.

2004

Model-Driven Data Acquisition
in Sensor Networks

Amol Deshpande, University of California Berkeley; et al.

2001

Weaving Relations for Cache Performance

Anastassia Ailamaki, Carnegie Mellon University; et al.

1997

Integrating Reliable Memory in Databases

Wee Teck Ng & Peter M. Chen, University of Michigan

ICML (Machine Learning)

2013

Vanishing Component Analysis

Roi Livni, The Hebrew University of Jerusalum; et al.

Fast Semidifferential-based
Submodular Function Optimization

Rishabh Iyer, University of Washington; et al.

2012

Bayesian
Posterior Sampling via Stochastic Gradient Fisher Scoring

Sungjin Ahn, University of California Irvine; et al.

2011

Computational
Rationalization: The Inverse Equilibrium Problem

Kevin Waugh, Carnegie Mellon University; et al.

2010

Hilbert Space Embeddings
of Hidden Markov Models

Le Song, Carnegie Mellon University; et al.

2009

Structure preserving embedding

Blake Shaw & Tony Jebara, Columbia University

2008

SVM Optimization:
Inverse Dependence on Training Set Size

Shai Shalev-Shwartz & Nathan Srebro, Toyota Technological Institute at Chicago

2007

Information-theoretic metric learning

Jason V. Davis, University of Texas at Austin; et al.

2006

Trading convexity for scalability

Ronan Collobert, NEC Labs America; et al.

2005

A support
vector method for multivariate performance measures

Thorsten Joachims, Cornell University

1999

Least-Squares Temporal Difference
Learning

Justin A. Boyan, NASA Ames Research Center

SIGIR (Information Retrieval)

2013

Beliefs and Biases in Web Search

Ryen W. White, Microsoft Research

2012

Time-Based Calibration
of Effectiveness Measures

Mark Smucker & Charles Clarke, University of Waterloo

2011

Find
It If You Can: A Game for Modeling Different Types of Web Search Success Using Interaction Data

Mikhail Ageev, Moscow State University; et al.

2010

Assessing
the Scenic Route: Measuring the Value of Search Trails in Web Logs

Ryen W. White, Microsoft Research

Jeff Huang, University of Washington

2009

Sources of evidence for vertical
selection

Jaime Arguello, Carnegie Mellon University; et al.

2008

Algorithmic
Mediation for Collaborative Exploratory Search

Jeremy Pickens, FX Palo Alto Lab; et al.

2007

Studying
the Use of Popular Destinations to Enhance Web Search Interaction

Ryen W. White, Microsoft Research; et al.

2006

Minimal Test Collections
for Retrieval Evaluation

Ben Carterette, University of Massachusetts Amherst; et al.

2005

Learning
to estimate query difficulty: including applications to missing content detection and dis...

Elad Yom-Tov, IBM Research; et al.

2004

A Formal Study of Information
Retrieval Heuristics

Hui Fang, University of Illinois at Urbana-Champaign; et al.

2003

Re-examining
the potential effectiveness of interactive query expansion

Ian Ruthven, University of Strathclyde

2002

Novelty and redundancy
detection in adaptive filtering

Yi Zhang, Carnegie Mellon University; et al.

2001

Temporal summaries of new topics

James Allan, University of Massachusetts Amherst; et al.

2000

IR
evaluation methods for retrieving highly relevant documents

Kalervo Järvelin & Jaana Kekäläinen, University of Tampere

1999

Cross-language
information retrieval based on parallel texts and automatic mining of parallel text...

Jian-Yun Nie, Université de Montréal; et al.

1998

A theory
of term weighting based on exploratory data analysis

Warren R. Greiff, University of Massachusetts Amherst

1997

Feature
selection, perceptron learning, and a usability case study for text categorization

Hwee Tou Ng, DSO National Laboratories; et al.

1996

Retrieving
spoken documents by combining multiple index sources

Gareth Jones, University of Cambridge; et al.

推荐一个站点,感谢作者的努力搜集,主要是各种*会议的最佳论文集合。

http://jeffhuang.com/best_paper_awards.html

数据挖掘方面重要会议的最佳paper集合的更多相关文章

  1. C#最佳工具集合:IDE、分析、自动化工具等

    C#是企业中广泛使用的编程语言,特别是那些依赖微软的程序语言.如果您使用C#构建应用程序,则最有可能使用Visual Studio,并且已经寻找了一些扩展来对您的开发进行管理.但是,这个工具列表可能会 ...

  2. InfoQ一波文章:AdaSearch/JAX/TF_Serving/leon.bottou.org/Neural_ODE/NeurIPS_2018最佳论文

    和 Nested Partition 有相通之处? 伯克利提出 AdaSearch:一种用于自适应搜索的逐步消除方法 在机器学习领域的诸多任务当中,我们通常希望能够立足预先给定的固定数据集找出问题的答 ...

  3. paper 59:招聘

     借Valse宝地发条招聘广告:D[腾讯优图]技术大咖招聘 欢迎各位技术大咖尤其应届优秀毕业生投递简历.简历投递:youtu@tencent.com简历投递,邮件标题请按照以下格式:[腾讯_上海_招聘 ...

  4. CCKS 2018 | 最佳论文:南京大学提出DSKG,将多层RNN用于知识图谱补全

    作者:Lingbing Guo.Qingheng Zhang.Weiyi Ge.Wei Hu.Yuzhong Qu 2018 年 8 月 14-17 日,主题为「知识计算与语言理解」的 2018 全国 ...

  5. FPGA 17最佳论文导读 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 后面陆续写一些关于神经网络加 ...

  6. 数据挖掘学习指引<一>

    对于当前热门的大数据.云计算等技术,被百度.阿里等国内互联网巨头炒的非常火,数据挖掘作为一门非常有用的技术,在商业管理.市场分析.科学计算等大数据方面发挥着大作用. 数据挖掘技术也变得非常火,why? ...

  7. 【转载】R中有关数据挖掘的包

    下面列出了可用于数据挖掘的R包和函数的集合.其中一些不是专门为了数据挖掘而开发,但数据挖掘过程中这些包能帮我们不少忙,所以也包含进来. 1.聚类 常用的包: fpc,cluster,pvclust,m ...

  8. sprint3 【每日scrum】 TD助手站立会议第十天

    站立会议 组员 昨天 今天 困难 签到 刘铸辉 (组长) 团队进入最终的功能测试阶段,准备发布Beta版 和团队发布Beta版,并开总结会议 总结会议 Y 刘静 团队集合软件测试 软件发布 没有 Y ...

  9. 老哥,您看我这篇Java集合,还有机会评优吗?

    集合在我们日常开发使用的次数数不胜数,ArrayList/LinkedList/HashMap/HashSet······信手拈来,抬手就拿来用,在 IDE 上龙飞凤舞,但是作为一名合格的优雅的程序猿 ...

随机推荐

  1. 改进uwsgi启动脚本,使其支持多个独立配置文件

    最近在研究flask,在架设运行环境的时候犯了难.因为我想把每个独立的应用像NGINX处理多个网站那样,每个应用单独一个配置文件.而网上流传的uwsgi启动脚本都只支持单个配置文件.虽然有文章说可以把 ...

  2. .NET跨平台之旅:将示例站点从ASP.NET 5 Beta7升级至RC1

    今天,我们将示例站点(about.cnblogs.com,服务器操作系统是Ubuntu)从ASP.NET 5 Beta7升级到了RC1,在升级过程中只遇到了一个问题. 在运行 dnvm upgrade ...

  3. Java初学随笔

    背景 狡兔三窟,在使用了近7-8年的C#后,考虑到云化的到来,还是要面向更多的语言与技术,近期决定学习scala,先从Java为跳板,最后达到学会并熟练 使用scala的目的. <核心技术&gt ...

  4. C&num;基础:命令解析

    1.普通格式命令的解析 例如: RENA<SP>E:\\A.txt<SP>C:\\B.txt<CRLF> (SP -> 空格,CRLF -> 回车加换行 ...

  5. SQL执行SQL语句提示 &quot&semi;内存不足&quot&semi;&lpar;insufficient memory&period;&period;&period;&period;&rpar;的解决方法

    由于本地执行的sql script的文件太大但是本地sql的运行内存有限,当我在MSSql的工具上运行这份178M左右的脚本的时候 它会提示 如下错误(Insufficient memory to c ...

  6. c&sol;c&plus;&plus; 函数模板初探

    函数模板初探 1,由来:有时候,函数的逻辑是一样的,只是参数的类型不同,比如下面 int Max(int a, int b){ return a > b ? a : b; } double Ma ...

  7. &lbrack;C&num;&period;net&rsqb;ListBox对Item进行重绘&comma;设置背景色和前景色

    别的不多说了,上代码,直接看 首先设置这行,或者属性窗口设置,这样才可以启动手动绘制,参数有三个 Normal: 自动绘制 OwnerDrawFixed:手动绘制,但间距相同 OwnerDrawVar ...

  8. if语句的嵌套以及条件运算符和条件表达式(初学者)

    1.当if语句中的执行语句又是if语句时,则构成了if语句的嵌套情形. 其一般形式可表示为: if() { if()……; } 或: if() if()语句1: else 语句2: else if() ...

  9. Resolve Missing artifact Issue in maven

    https://jingyan.baidu.com/article/d621e8da0a5b192864913f79.html

  10. Date与时间戳的相互转换(Java)

      1.Date对象转换为时间戳 Date date = new Date(); long times = date.getTime(); System.out.println(times); 效果如 ...