MANACHER---求最长回文串

时间:2023-12-17 23:43:02

求最长回文串,如果是暴力的方法的话,会枚举每个字符为中心,然后向两边检测求出最长的回文串,时间复杂度在最坏的情况下就是0(n^2),为什么时间复杂度会这么高,因为对于每一个作为中心的字符的检测是独立的,没有充分利用前面比较过信息,这就类似暴力求字符串的匹配最糟糕的情况下是0(n*m),然后通过预处理的信息把时间复杂度降低也就是kmp算法;

MANACHER算法:

先假设所有回文串都是以某个字符为中心的,即回文串的长度都是奇数;

lc[ i ]保存的是以位置i的字符为中心的最长回文串到最右边的距离

先假设以知lc[i],(0<=i<x)求lc[x]

设p=k+lc[k]-1,k是使p最大的i的取值,如下图

MANACHER---求最长回文串

如果x>p那么直接以x为中心进行检测,并更新k;

如果x<=p那么对于以k为中心x的对称点就是j,并且lc[j]的值已经知道了,

If (lc[j]<p-x+1) lc[x]=lc[j]

因为s[j-1]!=s[j+1], s[j-1]=s[x-1],s[j+1]=s[x+1],所以s[x-1]!=s[x+1]如图:

MANACHER---求最长回文串

If (lc[j]>=p-x+1) 那么lc[x]至少是lc[j] 如图:

MANACHER---求最长回文串

但对于蓝色位置是不是还需要检测

时间复杂度分析:因为对于每一位s[i]都只被检测了一次,所以是o(n);

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

现在回到最原先的问题,因为回文串有可能是“1221”这种长度是偶数的,MANACHER算法提供了一个构造的方法可以统一这两种情况:在两个字符之间插入一个没有出现过的字符,如‘#’,那么”1221”->”#1#2#2#1#”这样所有的回文串长度都是奇数的了,为了处理方便再在该字符串前面加一个‘$’字符,这样字符串就是$#1#2#2#1#

求出lc[i]后,对于以s[i]为中心的字符串,如果s[i]==’#’,那么len=(lc[i]-1)/2*2,因为lc[i]-1肯定是偶数(因为该回文串的最左和最右肯定是’#’)所以len=lc[i]-1;

如果s[i]!=’#’,那么len=(lc[i] - 1)/2*2+1;因为lc[i]-1肯定是奇数,所以len=lc[i]-2+1=lc[i]-1;

所以最后的解就是最大lc[i]-1;

 void Manacher(char *s){
s1[]='$';
int nn=strlen(s),c=;
for (int i=;i<nn;i++){
s1[c++]='#';
s1[c++]=s[i];
}s1[c++]='#';s1[c++]='\0';
// cout<<s<<endl<<s1<<endl; lc[]=;lc[]=;
int k=, p, j;
for (int i=;i<c;i++){
p=k+lc[k]-;
if (p<i){
int t=;
while (i-t>= && i+t<c && s1[i-t]==s1[i+t]) t++;
lc[i]=t; k=i;
}else {
j=*k-i;
if (lc[j]<p-i+) lc[i]=lc[j];
else {
int t=p-i+;
while (i-t>= && i+t<c && s1[i-t]==s1[i+t]) t++;
lc[i]=t; k=i;
}
}
}
int ret=;
for (int i=;i<c;i++){
//cout<<lc[i]<<" ";
if (lc[i]->ret) ret=lc[i]-;
}//cout<<endl;
printf("%d\n",ret); }