1、切片
切片:
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
>>> L[:3] ['Michael', 'Sarah', 'Tracy']
>>> L = list(range(100)) >>> L [0, 1, 2, 3, ..., 99]
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]
就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
字符串'xxx'
也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。
2.迭代:
for..in ..:
可迭代的有list、tuple、dict等
因为Python的for
循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
是否可迭代可以用collections模块的Iterable类型:
>>> from collections import Iterable
>>> isinstance('123',Iterable)
True
---------------------------------------------------------------------------------------------------------
字典迭代的几个方法:
默认迭代key:
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d: ... print(key)
... a c b
迭代value:
>>> for value in d.values():
... print(value)
...
3
1
2
同时迭代key,value方法二:
>>> for k,v in d.items():
... print(k,v)
...
c 3
a 1
b 2
同时迭代key,value:
>>> for item in d.items():
... print(item)
...
('c', 3)
('a', 1)
('b', 2)
迭代列表加索引:Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
>>> for i,v in enumerate(['A','B','C']):
... print(i,v)
...
0 A
1 B
2 C
>>> for i in enumerate(['A','B','C']):
... print(i)
...
(0, 'A')
(1, 'B')
(2, 'C')
3、列表生成式:
#一层:
a = [x for x in range(1,11)]
print(a)
#二层
a = [x*x for x in range(1,11) if x%2==0]
print(a)
#字符串
a = [m+n for m in 'ABC' for n in 'abc']
print(a)
#运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
import os
print([d for d in os.listdir('.')])
#练习题
L = ['Hello', 'World', 18, 'Apple', None]
print(isinstance(18,(str)))
print([s.lower() for s in L if isinstance(s,(str)) ])
4、生成器:
generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在for
循环的过程中不断计算出下一个元素,并在适当的条件结束for
循环。对于函数改成的generator来说,遇到return
语句或者执行到函数体最后一行语句,就是结束generator的指令,for
循环随之结束。
但不能能获得generator的return返回值,但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
#著名的斐波拉契数列(Fibonacci)
def Fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
g = Fib(6)
while True:
try:
n = next(g)
print('g:',n)
except StopIteration as e:
print('Generator return value:',e.value)
break
运行结果:
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
请注意区分普通函数和generator函数,普通函数调用直接返回结果:
>>> r = abs(6)
>>> r
6
generator函数的“调用”实际返回一个generator对象:
>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>
5、迭代器(Iterator)区别于Iterable
凡是可作用于for
循环的对象都是Iterable
类型;
凡是可作用于next()
函数的对象都是Iterator
类型,它们表示一个惰性计算的序列;
集合数据类型如list
、dict
、str
等是Iterable
但不是Iterator
,不过可以通过iter()
函数获得一个Iterator
对象。
Python的for
循环本质上就是通过不断调用next()
函数实现的,例如:
for x in [1, 2, 3, 4, 5]:
pass
实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break