有时我们希望在一个python的文件空间同时载入多个模型,例如 我们建立了10个CNN模型,然后我们又写了一个预测类Predict,这个类会从已经保存好的模型restore恢复相应的图结构以及模型参数。然后我们会创建10个Predict的对象Instance,每个Instance负责一个模型的预测。
Predict的核心为:
1
2
3
4
5
6
7
8
9
|
class Predict:
def __init__( self ....):
创建sess
创建恢复器tf.train.Saver
从恢复点恢复参数:tf.train.Saver.restore(...)
def predict( self ,...):
sess.run(output,feed_dict = {输入})
|
如果我们直接轮流生成10个不同的Predict 对象的话,我们发现tensorflow是会报类似于下面的错误:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py" , line 466 , in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape = [ 256 , 512 ] rhs shape = [ 640 , 512 ]
[[Node: save / Assign_14 = Assign[T = DT_FLOAT, _class = [ "loc:@fullcont/Variable" ], use_locking = true, validate_shape = true, _device = "/job:localhost/replica:0/task:0/cpu:0" ](fullcont / Variable, save / RestoreV2_14)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "PREDICT_WITH_SPARK_DATAFLOW_WA.py" , line 121 , in <module>
pre2 = Predict(label = new_list[ 1 ])
File "PREDICT_WITH_SPARK_DATAFLOW_WA.py" , line 47 , in __init__
self .saver.restore( self .sess, self .ckpt.model_checkpoint_path)
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py" , line 1560 , in restore
{ self .saver_def.filename_tensor_name: save_path})
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py" , line 895 , in run
run_metadata_ptr)
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py" , line 1124 , in _run
feed_dict_tensor, options, run_metadata)
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py" , line 1321 , in _do_run
options, run_metadata)
File "/home/jiangminghao/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py" , line 1340 , in _do_call
raise type (e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape = [ 256 , 512 ] rhs shape = [ 640 , 512 ]
|
关键就是:
Assign requires shapes of both tensors to match.意思是载入模型的时候 赋值失败。主要是因为不同对象里面的不同sess使用了同一进程空间下的相同的默认图graph。
正确的解决方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
class Predict:
def __init__( self ....):
self .graph = tf.Graph() #为每个类(实例)单独创建一个graph
with self .graph.as_default():
self .saver = tf.train.import_meta_graph(...) #创建恢复器
#注意!恢复器必须要在新创建的图里面生成,否则会出错。
self .sess = tf.Session(graph = self .graph) #创建新的sess
with self .sess.as_default():
with self .graph.as_default():
self .saver.restore( self .sess,...) #从恢复点恢复参数
def predict( self ,...):
sess.run(output,feed_dict = {输入})
|
以上这篇Tensorflow 同时载入多个模型的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/jmh1996/article/details/78793650