本文实例讲述了Python解决走迷宫问题算法。分享给大家供大家参考,具体如下:
问题:
输入n * m 的二维数组 表示一个迷宫
数字0表示障碍 1表示能通行
移动到相邻单元格用1步
思路:
深度优先遍历,到达每一个点,记录从起点到达每一个点的最短步数
初始化案例:
1 1 0 1 1
1 0 1 1 1
1 0 1 0 0
1 0 1 1 1
1 1 1 0 1
1 1 1 1 1
1 把图周围加上一圈-1 , 在深度优先遍历的时候防止出界
2 把所有障碍改成-1,把能走的地方改成0
3 每次遍历经历某个点的时候,如果当前节点值是0 把花费的步数存到节点里
如果当前节点值是-1 代表是障碍 不遍历它
如果走到当前节点花费的步数比里面存的小,就修改它
修改后的图:
-1 -1 -1 -1 -1 -1 -1
-1 0 0 -1 0 0 -1
-1 0 -1 0 0 0 -1
-1 0 -1 0 -1 -1 -1
-1 0 -1 0 0 0 -1
-1 0 0 0 -1 0 -1
-1 0 0 0 0 0 -1
-1 -1 -1 -1 -1 -1 -1
外周的-1 是遍历的时候防止出界的
默认从左上角的点是入口 右上角的点是出口
Python代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
# -*- coding:utf-8 -*-
def init():
global graph
graph.append([ - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ])
graph.append([ - 1 , 0 , 0 , - 1 , 0 , 0 , - 1 ])
graph.append([ - 1 , 0 , - 1 , 0 , 0 , 0 , - 1 ])
graph.append([ - 1 , 0 , - 1 , 0 , - 1 , - 1 , - 1 ])
graph.append([ - 1 , 0 , - 1 , 0 , 0 , 0 , - 1 ])
graph.append([ - 1 , 0 , 0 , 0 , - 1 , 0 , - 1 ])
graph.append([ - 1 , 0 , 0 , 0 , 0 , 0 , - 1 ])
graph.append([ - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 ])
#深度优先遍历
def deepFirstSearch( steps , x, y ):
global graph
current_step = steps + 1
print (x, y, current_step )
graph[x][y] = current_step
next_step = current_step + 1
'''
遍历周围4个点:
如果周围节点不是-1 说明 不是障碍 在此基础上:
里面是0 说明没遍历过 我们把它修改成当前所在位置步数加1
里面比当前的next_step大 说明不是最优方案 就修改它
里面比当前next_step说明当前不是最优方案,不修改
'''
if not (x - 1 = = 1 and y = = 1 ) and graph[x - 1 ][y] ! = - 1 and ( graph[x - 1 ][y]>next_step or graph[x - 1 ][y] = = 0 ) : #左
deepFirstSearch(current_step, x - 1 , y )
if not (x = = 1 and y - 1 = = 1 ) and graph[x][y - 1 ] ! = - 1 and ( graph[x][y - 1 ]>next_step or graph[x][y - 1 ] = = 0 ) : #上
deepFirstSearch(current_step, x , y - 1 )
if not (x = = 1 and y + 1 = = 1 ) and graph[x][y + 1 ] ! = - 1 and ( graph[x][y + 1 ]>next_step or graph[x][y + 1 ] = = 0 ) : #下
deepFirstSearch(current_step, x , y + 1 )
if not (x + 1 = = 1 and y = = 1 ) and graph[x + 1 ][y] ! = - 1 and ( graph[x + 1 ][y]>next_step or graph[x + 1 ][y] = = 0 ) : #右
deepFirstSearch(current_step, x + 1 , y )
if __name__ = = "__main__" :
graph = []
init()
deepFirstSearch( - 1 , 1 , 1 )
print (graph[ 1 ][ 5 ])
|
运行结果:
(1, 1, 0)
(1, 2, 1)
(2, 1, 1)
(3, 1, 2)
(4, 1, 3)
(5, 1, 4)
(5, 2, 5)
(5, 3, 6)
(4, 3, 7)
(3, 3, 8)
(2, 3, 9)
(2, 4, 10)
(1, 4, 11)
(1, 5, 12)
(2, 5, 13)
(2, 5, 11)
(4, 4, 8)
(4, 5, 9)
(5, 5, 10)
(6, 5, 11)
(6, 4, 12)
(6, 3, 13)
(6, 2, 14)
(6, 1, 15)
(6, 3, 7)
(6, 2, 8)
(6, 1, 9)
(6, 4, 8)
(6, 5, 9)
(6, 2, 6)
(6, 1, 7)
(6, 1, 5)
12
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/Lin-Yi/p/7355428.html