Redis 在新浪微博中的应用

时间:2022-11-10 11:43:15

Redis 在新浪微博中的应用

Redis简介

1. 支持5种数据结构

支持strings, hashes, lists, sets, sorted sets
string是很好的存储方式,用来做计数存储。sets用于建立索引库非常棒;

2. K-V 存储 vs K-V 缓存

新浪微博目前使用的98%都是持久化的应用,2%的是缓存,用到了600+服务器
Redis中持久化的应用和非持久化的方式不会差别很大:
非持久化的为8-9万tps,那么持久化在7-8万tps左右;
当使用持久化时,需要考虑到持久化和写性能的配比,也就是要考虑redis使用的内存大小和硬盘写的速率的比例计算;

3. 社区活跃

Redis目前有3万多行代码, 代码写的精简,有很多巧妙的实现,作者有技术洁癖
Redis的社区活跃度很高,这是衡量开源软件质量的重要指标,开源软件的初期一般都没有商业技术服务支持,如果没有活跃社区做支撑,一旦发生问题都无处求救;

Redis基本原理

redis持久化(aof) append online file:
写log(aof), 到一定程度再和内存合并. 追加再追加, 顺序写磁盘, 对性能影响非常小

1. 单实例单进程

Redis使用的是单进程,所以在配置时,一个实例只会用到一个CPU;
在配置时,如果需要让CPU使用率最大化,可以配置Redis实例数对应CPU数, Redis实例数对应端口数(8核Cpu, 8个实例, 8个端口), 以提高并发:
单机测试时, 单条数据在200字节, 测试的结果为8~9万tps;

2. Replication

过程: 数据写到master-->master存储到slave的rdb中-->slave加载rdb到内存。
存储点(save point): 当网络中断了, 连上之后, 继续传.
Master-slave下第一次同步是全传,后面是增量同步;、

3. 数据一致性

长期运行后多个结点之间存在不一致的可能性;
开发两个工具程序:
1.对于数据量大的数据,会周期性的全量检查;
2.实时的检查增量数据,是否具有一致性;

对于主库未及时同步从库导致的不一致,称之为延时问题;
对于一致性要求不是那么严格的场景,我们只需要要保证最终一致性即可;
对于延时问题,需要根据业务场景特点分析,从应用层面增加策略来解决这个问题;
例如:
1.新注册的用户,必须先查询主库;
2.注册成功之后,需要等待3s之后跳转,后台此时就是在做数据同步。

新浪Redis使用历程

2009年, 使用memcache(用于非持久化内容), memcacheDB(用于持久化+计数),
memcacheDB是新浪在memcache的基础上,使用BerkeleyDB作为数据持久化的存储实现;

1. 面临的问题

  • 数据结构(Data Structure)需求越来越多, 但memcache中没有, 影响开发效率
  • 性能需求, 随着读操作的量的上升需要解决,经历的过程有:
    数据库读写分离(M/S)-->数据库使用多个Slave-->增加Cache (memcache)-->转到Redis
  • 解决写的问题:
    水平拆分,对表的拆分,将有的用户放在这个表,有的用户放在另外一个表;
  • 可靠性需求
    Cache的"雪崩"问题让人纠结
    Cache面临着快速恢复的挑战

  • 开发成本需求
    Cache和DB的一致性维护成本越来越高(先清理DB, 再清理缓存, 不行啊, 太慢了!)
    开发需要跟上不断涌入的产品需求
    硬件成本最贵的就是数据库层面的机器,基本上比前端的机器要贵几倍,主要是IO密集型,很耗硬件;

  • 维护性复杂
    一致性维护成本越来越高;
    BerkeleyDB使用B树,会一直写新的,内部不会有文件重新组织;这样会导致文件越来越大;大的时候需要进行文件归档,归档的操作要定期做;
    这样,就需要有一定的down time;

基于以上考虑, 选择了Redis

2. 寻找开源软件的方式及评判标准

  • 对于开源软件,首先看其能做什么,但更多的需要关注它不能做什么,它会有什么问题?
  • 上升到一定规模后,可能会出现什么问题,是否能接受?
  • google code上, 国外论坛找材料(国内比国外技术水平滞后5年)
  • 观察作者个人的代码水平

Redis应用场景

1. 业务使用方式

  • hash sets: 关注列表, 粉丝列表, 双向关注列表(key-value(field), 排序)
  • string(counter): 微博数, 粉丝数, ...(避免了select count(*) from ...)
  • sort sets(自动排序): TopN, 热门微博等, 自动排序
  • lists(queue): push/sub提醒,...

上述四种, 从精细化控制方面,hash sets和string(counter)推荐使用, sort sets和lists(queue)不推荐使用
还可通过二次开发,进行精简。比如: 存储字符改为存储整形, 16亿数据, 只需要16G内存
存储类型保存在3种以内,建议不要超过3种;

将memcache +myaql 替换为Redis:
Redis作为存储并提供查询,后台不再使用mysql,解决数据多份之间的一致性问题;

2. 对大数据表的存储

(eg:140字微博的存储)
一个库就存唯一性id和140个字;
另一个库存id和用户名,发布日期、点击数等信息,用来计算、排序等,等计算出最后需要展示的数据时再到第一个库中提取微博内容;

改进的3个步骤:
1)发现现有系统存在问题;
2)发现了新东西, 怎么看怎么好, 全面转向新东西;
3)理性回归, 判断哪些适合新东西, 哪些不适合, 不合适的回迁到老系统

3. 一些技巧

  • 很多应用, 可以承受数据库连接失败, 但不能承受处理慢
  • 一份数据, 多份索引(针对不同的查询场景)
  • 解决IO瓶颈的唯一途径: 用内存
  • 在数据量变化不大的情况下,优先选用Redis

遇到的问题及解决办法

(注意: 都是量特别大时候会出现的, 量小了怎么都好说)

1.Problem: Replication中断后, 重发-->网络突发流量

Solution: 重写Replication代码, rdb+aof(滚动)

2.Problem: 容量问题

Solution: 容量规划和M/S的sharding功能(share nothing, 抽象出来的数据对象之间的关联数据很小)
增加一些配置, 分流, 比如: 1,2,3,4, 机器1处理%2=1的, 机器2处理%2=0的.
低于内存的1/2使用量, 否则就扩容(建议Redis实例使用的数据,最大不要超过内存的80%)
我们线上96G/128G内存服务器不建议单实例容量大于20/30G。
微博应用中单表数据最高的有2T的数据,不过应用起来已经有些力不从心;
每个的端口不要超过20G;测试磁盘做save所需要的时间,需要多长时间能够全部写入;内存越大,写的时间也就越长;
单实例内存容量较大后,直接带来的问题就是故障恢复或者Rebuild从库的时候时间较长,对于普通硬盘的加载速度而言,我们的经验一般是redis加载1G需要1分钟;(加载的速度依赖于数据量的大小和数据的复杂度)
Redis rewrite aof和save rdb时,将会带来非常大且长的系统压力,并占用额外内存,很可能导致系统内存不足等严重影响性能的线上故障。

reblance: 现有数据按照上述配置重新分发。
后面使用中间层,路由HA;
注:目前官方也正在做这个事,Redis Cluster,解决HA问题;

3. Problem: bgsave or bgwriteaof的冰晶问题

Solution: 磁盘性能规划和限制写入的速度, 比如: 规定磁盘以200M/s的速度写入, 细水长流, 即使到来大量数据. 但是要注意写入速度要满足两个客观限制:
符合磁盘速度
符合时间限制(保证在高峰到来之前, 就得写完)

4.Problem: 运维问题

1)Inner Crontab: 把Crontab迁移到Redis内部, 减少迁移时候的压力
本机多端口避免同时做 - 能做到
同一业务多端口(分布在多机上), 避免同时做 - 做不到
2)动态升级: 先加载.so文件, 再管理配置, 切换到新代码上(Config set命令)
把对redis改进的东西都打包成lib.so文件,这样能够支持动态升级
自己改的时候要考虑社区的升级。当社区有新的版本,有很好用的新功能时,要能很容易的与我们改进后的版本很好的merge;
升级的前提条件: 模块化, 以模块为单位升级
加载时间取决于两个方面: 数据大小, 数据结构复杂度. 一般, 40G数据耗时40分钟
分布式系统的两个核心问题: A.路由问题 B.HA问题

3)危险命令的处理: 比如: fresh all删除全部数据, 得进行控制
运维不能只讲数据备份,还得考虑数据恢复所需要的时间;
增加权限认证(管理员才有权限)eg:flashall 权限认证,得有密码才能做;
当然,高速数据交互一般都不会在每次都进行权限认证,通用的处理策略是第一次认证,后期都不用再认证;
控制hash策略(没有key, 就找不到value; 不知道hash策略, 就无法得到key)

4)Config Dump:
内存中的配置项动态修改过, 按照一定策略写入到磁盘中(Redis已支持)
5)bgsave带来aof写入很慢:
fdatasync在做bgsave时, 不做sync aof(会有数据出入)
6)成本问题: (22T内存, 有10T用来计数)
Redisscounter(16亿数据占用16G内存) - 全部变为整型存储, 其余(字符串等)全不要
Redis+SSD(counterService计数服务)
顺序自增, table按照顺序写, 写满10个table就自动落地(到SSD)
存储分级: 内存分配问题, 10K和100K写到一块, 会有碎片. Sina已经优化到浪费只占5%以内(已经很好了!)

5.Problem: 分布式问题

1.Config Server: 命名空间, 特别大的告诉访问, 都不适合用代理, 因为代理降低速度, 但是, Sina用了(单机多端口, Redis Cluster, sentinel)
Config Server放到Zookeeper上
最前面是命名服务,后面跟的是无状态的twmemproxy(twitter的改进的,用C写的) ,后面才是redis;
2.twmemproxy
应用不必关心连接失败, 由代理负责重连
把Hash算法放到代理商
代理后边的升级, 前端不关心, 解决了HA的问题
无状态, 多台代理无所谓
3.AS --> Proxy -->Redis
4.Sina的Redis都是单机版, 而Redis-Cluster交互过于复杂,没有使用
做HA的话,一定要配合监控来做,如果挂了之后,后续该如何做;
并不是追求单机性能,而是集群的吞吐量,从而可以支持无线扩展;

经验总结

  • 提前做好数据量的规划, 减少sharding(互联网公司一般以年为单位)
  • 只存精细化数据(内存很金贵!)
  • 存储用户维度的数据
    对象维度的数据要有生命周期
    特别是数据量特别大的时候,就很有必要来进行划分了;
  • 暴露服务的常见过程: IP-->负载均衡-->域名-->命名服务(一张表: 名字+资源(IP+端口))
  • 对于硬件消耗,IO、网络和CPU相比,Redis最消耗的是CPU,复杂的数据类型必定带来CPU消耗;
  • 新浪微博响应时间超时目前设置为5s;(返回很慢的记录key,需记录下来分析,慢日志);
  • 备份的数据要定期要跑一下生产的数据;用来检查备份数据的有效性;
  • slave挂多了肯定会对master造成比较的影响;新浪微博目前使用的M/S是一拖一,主要用来做容灾;
    同步时,是fork出一个单独进程来和slave进行同步;不会占用查询的进程;
  • 升级到2.6.30以后的linux内核;
    在2.6.30以上对软中断的问题处理的很好,性能提升效果明显,差不多有15%到30%的差距;
  • redis不用读写分离,每个请求都是单线程,为什么要进行读写分离。

Posted by: 大CC | 19DEC,2013
博客:blog.me115.com
微博:新浪微博

Redis 在新浪微博中的应用的更多相关文章

  1. 【转载】Redis在新浪微博中的应用

    转载自文章 http://blog.me115.com/2013/12/19/redis-e5-9c-a8-e6-96-b0-e6-b5-aa-e5-be-ae-e5-8d-9a-e4-b8-ad-e ...

  2. Redis设置认证密码 Redis使用认证密码登录 在Redis集群中使用认证密码

    Redis默认配置是不需要密码认证的,也就是说只要连接的Redis服务器的host和port正确,就可以连接使用.这在安全性上会有一定的问题,所以需要启用Redis的认证密码,增加Redis服务器的安 ...

  3. Redis在PHP中的基本使用案例

    下载http://www.oschina.net/p/redis 解压后里面有:lib 源文件 .examples 例子.test测试 将lib目录拷贝到你的项目中,就可以开始你的predis操作了. ...

  4. redis 在 php 中的应用(List篇)

    本文为我阅读了 redis参考手册 之后编写,注意 php_redis 和 redis-cli 的区别(主要是返回值类型和参数用法) 目录: List(列表) LPUSH LPUSHX RPUSH R ...

  5. redis 在 php 中的应用(Sorted-set篇)

    本文为我阅读了 redis参考手册 之后编写,注意 php_redis 和 redis-cli 的区别(主要是返回值类型和参数用法) Redis 有序集合和集合一样也是string类型元素的集合,且不 ...

  6. redis 在 php 中的应用(Set篇)

    本文为我阅读了 redis参考手册 之后编写,注意 php_redis 和 redis-cli 的区别(主要是返回值类型和参数用法) Redis的 Set 是 string 类型的无序集合.集合成员是 ...

  7. Redis在python中的使用

    一 简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted ...

  8. redis 在 php 中的应用

    一.redis 在 php 中的应用(Key篇) 二.redis 在 php 中的应用(String篇) 三.redis 在 php 中的应用(Hash篇) 四.redis 在 php 中的应用(Li ...

  9. 【*】Redis实战场景中相关问题

    一.Redis简介 redis主要解决的问题 分布式缓存是分布式系统中的重要组件,主要解决高并发.大数据场景下,热点数据访问的性能问题,提供高性能的数据快速访问. 使用缓存常见场景 项目中部分数据访问 ...

随机推荐

  1. 新浪云SAE使用入门,教你如何发布自己的网站

    新浪云sae是一个免费的web服务器,SAE的Web服务器采用分布式部署的方式,开发者将代码部署到SAE前端机后,会通过同步的方式,将代码部署到SAE所有的Web服务器.相当于在每一台Web服务器上都 ...

  2. web端测试和移动端测试的区别小记

    转:http://qa.blog.163.com/blog/static/19014700220157128345318/ 之前一直参与web端的测试,最近一个项目加入了移动端,本人有幸参与了移动端的 ...

  3. 请实现一个函数用来找出字符流中第一个只出现一次的字符。例如,当从字符流中只读出前两个字符"go"时,第一个只出现一次的字符是"g"。当从该字符流中读出前六个字符“google"时,第一个只出现一次的字符是"l"。

    // test20.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include&lt ...

  4. js实现睡眠

    //js暂停函数 function Pause(obj, iMinSecond) { if (window.eventList == null) window.eventList = new Arra ...

  5. 版本控制之三:SVN合并及解决冲突(转)

    转自 http://www.cnblogs.com/xiaobaihome/archive/2012/03/20/2408089.html 接下来,试试用TortoiseSVN修改文件,添加文件,删除 ...

  6. ABP 数据迁移

    我主要是在项目部署的时候.当添加一个租户的时候.那么租户是有一个单独的数据库.而我的并没有用多租户单数据库. 因此我的模块里面有一个领域事件 当租户添加时将生前表生成到对应的数据库中.如果那位网友有更 ...

  7. Python itertools模块详解

    这货很强大, 必须掌握 文档 链接 http://docs.python.org/2/library/itertools.html pymotw 链接 http://pymotw.com/2/iter ...

  8. 下载pywinauto

    1.下载pywinauto 链接:http://pywinauto.github.io/ 2.将安装包放到D:python36\script,进入pywinauto目录,按shift+右键,进入命令窗 ...

  9. Cause&colon; com&period;mysql&period;jdbc&period;exceptions&period;jdbc4&period;CommunicationsException&colon; The last packet successfully received from the server was 78&comma;050&comma;512 milliseconds ago&period;

    今天访问已经架上服务器的网站,报错: Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: The last packet s ...

  10. ExtJs Ext&period;data&period;Model 学习笔记

    Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...