UVa11183 Teen Girl Squad, 最小树形图,朱刘算法

时间:2022-11-09 18:30:29

Teen Girl Squad 

Input: 
Standard Input

Output: Standard Output

You are part of a group of n teenage girls armed with cellphones. You have some news you want to tell everyone in the group. The problem is that no two of you are in the same room, and you must communicate using only cellphones. What's worse
is that due to excessive usage, your parents have refused to pay your cellphone bills, so you must distribute the news by calling each other in the cheapest possible way. You will call several of your friends, they will call some of their friends, and so on
until everyone in the group hears the news.

Each of you is using a different phone service provider, and you know the price of girl A calling girl B for all possible A and B. Not all of your friends like each other, and some of them will never call people they don't like. Your job is to find the cheapest
possible sequence of calls so that the news spreads from you to all n-1 other members of the group.

Input

The first line of input gives the number of cases, (N<150). N test cases follow. Each one starts with two lines containing n (0<= n<=1000) and m (0 <= m <=
40,000) . Girls are numbered from 0 to n-1 , and you are girl 0. The next m lines will each contain 3 integers, uv and w, meaning that a call from girl u to
girl v costs w cents (0 <= w <= 1000) . No other calls are possible because of grudges, rivalries and because they are, like, lame. The input file size is around 1200 KB.

Output

For each test case, output one line containing "Case #x:" followed by the cost of the cheapest method of distributing the news. If there is no solution, print "Possums!" instead.

Sample Input    Sample Output

4
2
1
0 1 10
2
1
1 0 10
4
4
0 1 10
0 2 10
1 3 20
2 3 30
4
4
0 1 10
1 2 20
2 0 30
2 3 100
Case #1: 10
Case #2: Possums!
Case #3: 40
Case #4: 130
                  


最小树形图

有向图的最小生成树,而且规定了起点。

解法:1.首先dfs推断一下起点可达其它随意点,否则不存在树形图。

      2.为每一个点找一条最小的入边,假设没环那么这些边就构成了最小树形图,转入4;否则转入3.

      3.将环上每条边的边权加入到ans中,同一时候形成新的点new,对于环内多有的点i,假设存在边<j,i>则<j,new>的边权等于全部 <j,i>-<pre[i],i>中最小的(由于缩点后再次构图必须从环中去除一条边<pre[i],i>再加入一条最小边<x,i>,这样就能够保证答案的正确性,非常巧妙,换个图就非常清晰了),<new,j>的边权=全部<i,j>的最小值,缩点完毕,转向2.

      4.缩点后n个点,n-1条边,切无环,此时就是一颗连通树了,ans+=这n-1条边的边权记得答案;

UVa11183 Teen Girl Squad, 最小树形图,朱刘算法

以上是国人发明的“朱刘算法”,邻接矩阵复杂度(n ^3)临界表复杂度(VE)。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#define for0(a,b) for(a=0;a<b;++a)
#define for1(a,b) for(a=1;a<=b;++a)
#define foru(i,a,b) for(i=a;i<=b;++i)
#define ford(i,a,b) for(i=a;i>=b;--i)
using namespace std;
typedef long long ll;
const int maxn = 1000 + 5;
const int maxm = 40000 + 5;
const int INF = 1e9; struct Edge{ int u, v, cost;};
Edge edge[maxm];
int pre[maxn], id[maxn], vis[maxn], in[maxn];
int zhuliu(int root, int n, int m, Edge edge[])
{
int res = 0, u, v;
int i, j;
while(1){
for0(i,n) in[i] = INF;
for0(i,m) if(edge[i].u != edge[i].v && edge[i].cost < in[edge[i].v]){
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].cost;
}
for0(i,n) if(i != root && in[i] == INF) return -1;//不能存在最小树形图
int tn = 0;
memset(id, -1, sizeof id );
memset(vis, -1, sizeof vis );
in[root] = 0;
for0(i,n)
{
res += in[i];
v = i;
while(vis[v] != i && id[v]==-1 && v!=root){
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1){
for(int u=pre[v]; u != v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn==0) break; //没有有向环
for0(i,n) if(id[i] == -1)
id[i] = tn++;
for(i=0; i<m; )
{
v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u != edge[i].v)
edge[i++].cost -= in[v];
else
swap(edge[i], edge[--m]);
}
n = tn;
root = id[root];
}
return res;
} int g[maxn][maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
int T, i, j;
scanf("%d", &T);
for(int cas=1; cas<=T; ++cas)
{
scanf("%d%d", &n, &m);
for0(i,n) for0(j,n)
g[i][j] = INF;
int u, v, c;
while(m--)
{
scanf("%d%d%d", &u, &v, &c);
if(u==v) continue;
g[u][v] = min(g[u][v], c);
}
int e = 0;
for0(i,n) for0(j,n) if(g[i][j]<INF){
edge[e].u = i;
edge[e].v = j;
edge[e++].cost = g[i][j];
}
int ans = zhuliu(0, n, e, edge );
printf("Case #%d: ", cas);
if(ans == -1) printf("Possums!\n");
else printf("%d\n", ans);
}
return 0;
}

UVa11183 Teen Girl Squad, 最小树形图,朱刘算法的更多相关文章

  1. 最小树形图——朱刘算法&lpar;Edmonds&rpar;

    定义:一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 朱刘算法实现过程: [在选出入边集后(看步骤1),若有向图中不存在有向环,说明该图就是最小树形图] 1,选入 ...

  2. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  3. poj3164&lpar;最小树形图&amp&semi;朱刘算法模板&rpar;

    题目链接:http://poj.org/problem?id=3164 题意:第一行为n, m,接下来n行为n个点的二维坐标, 再接下来m行每行输入两个数u, v,表点u到点v是单向可达的,求这个有向 ...

  4. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  5. 最小树形图--朱刘算法&lpar;&lbrack;JSOI2008&rsqb;小店购物&rpar;

    题面 luogu Sol 首先设一个 \(0\) 号点,向所有点连边,表示初始价值 显然这个图的一个 \(0\) 为根的最小有向生成树的边权和就是每个买一次的最小价值 再买就一定能优惠(包含 \(0\ ...

  6. 洛谷P4716 【模板】最小树形图&lpar;朱刘算法&rpar;

    题意 题目链接 Sol 朱刘算法?感觉又是一种神仙贪心算法 大概就是每次贪心的用每个点边权最小的入边更新答案,如果不行的话就缩起来找其他的边 不详细说了,丢链接走人.. #include<bit ...

  7. UVA11183 Teen Girl Squad —— 最小树形图

    题目链接:https://vjudge.net/problem/UVA-11183 You are part of a group of n teenage girls armed with cell ...

  8. UVa11183 - Teen Girl Squad&lpar;最小树形图-裸&rpar;

    Problem I Teen Girl Squad  Input: Standard Input Output: Standard Output -- 3 spring rolls please. - ...

  9. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  10. bzoj 4349 最小树形图——朱刘算法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4349. 学习博客:http://www.cnblogs.com/xzxl/p/7243466 ...

随机推荐

  1. ionic之&dollar;ionicGesture手势(大坑)

    鄙人来本公司前未用过ionic框架,但由于ionic是基于angularjs封装的,正好我用过angularjs,很荣幸的面试就过了,然后通过该网站http://www.ionic.wang(后面简称 ...

  2. 编译Hadoop

    Apache Hadoop 生态圈软件下载地址:http://archive.apache.org/dist/hadoop/hadoop下载地址 http://archive.apache.org/d ...

  3. spring随想

    //不定时持续更新 1.拦截器通过配置文件,在某方法前后添加一些处理,如权限判断等,减少了改方法需要处理的事,是其更专注,由配置文件来设定责任链,更灵活,而且责任链能够复用(一方面是这样能由sprin ...

  4. Hibernate学习小结

    之前从事.net开发的三年经验里,我是用过EF.Microsoft Dynamic crm中集成的ORM以及上一家公司自主开发的ORM. 再接触Hibernate后,上手比较简单,但其提供了大量的接口 ...

  5. 字符设备驱动&lbrack;深入&rsqb;:linux cdev详解

    linux cdev详解  http://blog.chinaunix.net/uid-24517893-id-161446.html 用cdev_add添加字符设备驱动: //linux2.6中用c ...

  6. 使用JavaScript在Canvas上画出一片星空

    随着Html5的迅猛发展,画布也变得越来越重要.下面我就写一个关于在canvas上画出一片星空的简单的代码的示例. 理论基础 初始化一个canvas,获得一个用于绘制图形的上下文环境context.并 ...

  7. R语言实战基本方法

    R语言的主要功能包括数据统计分析方法和数据可视化,数据分析在这一章中主要学习创建基本图形和基本数据分析 一 基本图形 1条形图 barplot(height)  //添加一个条形图,height是一个 ...

  8. javascript中的getter和setter

    在ECMAScript 5中,属性值可以用一个或两个方法代替,这两个方法就是getter和setter var man = { name : 'lidg', weibo : '@lidg', get ...

  9. Spring获取bean工具类&comma;可用于在线程里面获取bean

    Spring获取bean工具类,可用于在线程里面获取bean import java.util.Locale; import org.springframework.beans.BeansExcept ...

  10. 【Beta Scrum】冲刺!4&sol;5

    1. 今日完成情况 人员 学号 分工 是否完成 完成情况 胡武成 031502610 完成登录注册api,协助web端完成api Y 基本逻辑写完,短信部分还在修改中,预计明天早上便能完成 郭剑南 0 ...